Package 'tvvarss'

Title: Time Varying Vector Autoregressive State Space Models
Description: The tvvarss package uses Stan (mc-stan.org) to fit multi-site multivariate autoregressive (aka vector autoregressive) state space models with a time varying interaction matrix.
Authors: Eric Ward [aut, cre], Mark Scheuerell [aut], Steve Katz [aut]
Maintainer: Eric Ward <[email protected]>
License: GPL (>=3)
Version: 0.1.1
Built: 2024-12-29 05:37:55 UTC
Source: https://github.com/atsa-es/tvvarss

Help Index


Time Varying Vector Autoregressive State Space Models

Description

The tvvarss package uses Stan (mc-stan.org) to fit multi-site multivariate autoregressive (aka vector autoregressive) state space models with a time varying interaction matrix.

Details

The DESCRIPTION file:

Package: tvvarss
Type: Package
Title: Time Varying Vector Autoregressive State Space Models
Version: 0.1.1
Authors@R: as.person(c( "Eric Ward <[email protected]> [aut, cre]", "Mark Scheuerell <[email protected]> [aut]", "Steve Katz <[email protected]> [aut]" ))
Maintainer: Eric Ward <[email protected]>
Description: The tvvarss package uses Stan (mc-stan.org) to fit multi-site multivariate autoregressive (aka vector autoregressive) state space models with a time varying interaction matrix.
License: GPL (>=3)
Depends: R (>= 3.4.0)
Imports: MASS, methods, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), rstantools (>= 2.1.1), ggplot2, viridisLite, loo (>= 2.0.0), rlang (>= 0.3.1)
LinkingTo: BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>= 2.18.0)
Suggests: testthat, knitr, rmarkdown
Encoding: UTF-8
LazyData: true
URL: https://atsa-es.github.io/tvvarss/, https://github.com/atsa-es/tvvarss
BugReports: https://github.com/atsa-es/tvvarss/issues
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.1.1
SystemRequirements: GNU make
Biarch: true
VignetteBuilder: knitr
Config/pak/sysreqs: make
Repository: https://atsa-es.r-universe.dev
RemoteUrl: https://github.com/atsa-es/tvvarss
RemoteRef: HEAD
RemoteSha: 31da937bf91afb3ee0b716d785a95bad377eb26c
Author: Eric Ward [aut, cre], Mark Scheuerell [aut], Steve Katz [aut]

Index of help topics:

sim2fit                 Simulate TVVAR model and add observation error
simTVVAR                Simulate the process component of a TVVARSS
                        model
tvvarss                 Fit a TVVARSS model to multivariate time series
                        data
tvvarss-package         Time Varying Vector Autoregressive State Space
                        Models

Author(s)

Eric Ward [aut, cre], Mark Scheuerell [aut], Steve Katz [aut]

Maintainer: Eric Ward <[email protected]>

References

Francis, T.B. E. Wolkovich, S.E. Hampton, M.D. Scheuerell, S.L. Katz, and E.E. Holmes. 2014. Shifting regimes and changing interactions in the Lake Washington, USA, plankton community from 1962–1994. PLoS ONE 9(10): e110363. doi:10.1371/journal.pone.0110363.

Hampton, S. E., Holmes, E. E., Scheef, L. P., Scheuerell, M. D., Katz, S. L., Pendleton, D. E. and Ward, E. J. 2013. Quantifying effects of abiotic and biotic drivers on community dynamics with multivariate autoregressive (MAR) models. Ecology, 94: 2663–2669. doi:10.1890/13-0996.1

Holmes, E. E., E. J. Ward, and M. D. Scheuerell. 2012. Analysis of multivariate time-series using the MARSS package. NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd E., Seattle, WA 98112

Holmes, E. E., E. J. Ward and K. Wills. 2012. MARSS: Multivariate autoregressive state-space models for analyzing time-series data. R Journal 4: 11-19.

Ives, A.R., B. Dennis, K.L. Cottingham, and S.R. Carpenter. 2003. Estimating community stability and ecological interactions from time-series data. Ecological Monographs, 73(2), pp. 301–330.

Ives, A.R. and V. Dakos. 2012. Detecting dynamical changes in nonlinear time series using locally linear state-space models. Ecosphere 3(6):58. http://dx.doi.org/10.1890/ES11-00347.1

See Also

Optional links to other man pages, e.g.

Examples

#simple examples of the most important functions

Simulate TVVAR model and add observation error

Description

sim2fit adds observation error to a simulated TVVAR process and converts it to a form suitable for fitting with tvvarss.

Usage

sim2fit(obj, n_sims, sd = 0.1, new_real = TRUE)

Arguments

obj

A fitted simTVVAR object.

n_sims

The number of realizations of the TVVAR process.

sd

The standard deviation of the Gaussian observation errors. Can be set to 0 for no observation error.

new_real

If n_sims > 1, logical indicator of whether to base the new observations on a new realization of the TVVAR process.

Details

This is a helper function that takes a fitted simTVVAR object and simulates multiple realizations of the process before adding Gaussian obsveration errors.

Value

An array with dimensions c(n_sim, TT, n_spp).

Examples

set.seed(123)
## number of time steps
TT <- 30
## number of spp/guilds
nn <- 4
## CASE 1: linear food chain
topo <- matrix(list(0), nn, nn)
for (i in 1:(nn - 1)) {
  topo[i, i + 1] <- "td"
  topo[i + 1, i] <- "bu"
}
## simulate process
lfc <- simTVVAR(Bt = NULL, topo = topo, TT = 30, var_QX = rev(seq(1, 4) / 40), cov_QX = 0, var_QB = 0.05, cov_QB = 0)
## create data array with 3 realizations of the process
dat <- sim2fit(lfc, 3)

Simulate the process component of a TVVARSS model

Description

simTVVAR simulates the process (state) component of a TVVARSS model.

Usage

simTVVAR(
  Bt = NULL,
  topo = NULL,
  TT,
  var_QX,
  cov_QX,
  var_QB,
  cov_QB = 0,
  QQ_XX = NULL,
  QQ_BB = NULL,
  X0 = NULL,
  CC = NULL,
  cc = NULL
)

Arguments

Bt

A matrix describing the topology of the food web (see 'Details'). If Bt == NULL, then the food web topology must be specified and passed as topo. See 'Details'.

topo

Optional list matrix describing the presumed topology of the community. Pairwise interactions are specified as density-dependent ("dd"), top-down ("td"), bottom-up ("bu"), competitive/facilitative ("cf"), or absent ("zero"). If specified, pairwise interactions will be constrained in an approporiate manner (e.g., top-down effects are between -1 and 0).

TT

Number of time steps to simulate.

var_QX

Scalar or vector of variances for process errors of states.

cov_QX

Covariance, if any, of the process errors of the states; if cov_QX > 0, then var_QX must be a scalar.

var_QB

Scalar or vector of variances for process errors of B.

cov_QB

Covariance, if any, of process errors of B; if cov_QB > 0, then var_QB must be a scalar.

QQ_XX

Optionally specify the explicit form for the var-cov matrix Q of the process errors of the states.

QQ_BB

Optionally specify the explicit form for the var-cov matrix Q of the process errors of B.

X0

Optionally specify vector of initial states; nrow(X0) must equal nrow(Bt).

CC

Optionally specify matrix of covariate effects on states.

cc

Optionally specify matrix of covariates.

Details

Bt can be used in one of two ways when simulating a TVVAR model:

  1. An nxnn x n matrix with initial numeric values of B (i.e., B0). If QQ_BB = matrix(0, n, n) then, a time-invariant (MARSS) model is simulated based on these values.

  2. An nxnx(T+1)n x n x (T+1) array with actual values of B for each time step, including B0. This is useful for simulating multiple realizations of the same process.

topo can be used to specify the food web topology by passing an nxnn x n matrix with a combination of character and numeric values in the off-diagonal elements; the diagonal should always contain "dd" as density-dependence is implicit in this model. Use 0 or "zero" to indicate no interaction and the following character codes for ecological interactions:

  • "td" to indicate a top-down interaction

  • "bu" to indicate a bottom-up interaction

  • "cf" to indicate a competitive/facilitative interaction

See 'Examples' for details on formatting B0.

Value

A list with the following components:

B_mat

An array of the B matrix over time; dim(B_mat) = c(n,n,T+1).

WW_BB

The process errors for B; dim(WW_BB) = c(n^2,T).

QQ_BB

Variance-covariance matrix of the process errors for B; dim(QQ_BB) = c(n^2,n^2).

states

A matrix of the states over time; dim(states) = c(n,T+1).

WW_XX

The process errors (innovations) for the states; dim(WW_XX) = c(n,T).

QQ_XX

Variance-covariance matrix of the process errors for the states; dim(QQ_XX) = c(n,n).

call

The function call as returned by match.call().

Examples

# set.seed(123)
# ## number of time steps
# TT <- 30
# ## number of spp/guilds
# nn <- 4
# ## CASE 1: linear food chain; starting values are random
# B0_lfc <- matrix(list(0),nn,nn)
# diag(B0_lfc) <- "dd"
# for(i in 1:(nn-1)) {
#   B0_lfc[i,i+1] <- "td"
#   B0_lfc[i+1,i] <- "bu"
# }
# ## inspect B0
# B0_lfc
# ## simulate & plot states
# lfc <- simTVVAR(Bt=NULL,topo=B0_lfc,TT=TT,var_QX=rev(seq(1,4)/40),cov_QX=0,var_QB=0.05,cov_QB=0)
# matplot(t(lfc$states),type="l")
#
# ## CASE 2: 1 consumer & n-1 producers; starting values are random
# B0_cp <- matrix(list("cf"),nn,nn)
# B0_cp[1:(nn-1),nn] <- "td"
# B0_cp[nn,1:(nn-1)] <- "bu"
# diag(B0_cp) <- "dd"
# ## inspect B0
# B0_cp
# ## simulate & plot states
# cp <- simTVVAR(Bt=NULL,topo=B0_lfc,TT=TT,var_QX=rev(seq(1,4)/40),cov_QX=0,var_QB=0.05,cov_QB=0)
# matplot(t(cp$states),type="l")
#
# ## simulate a second realization of CASE 2 using same B
# cp2 <- simTVVAR(Bt=cp$B_mat,topo=B0_lfc,TT=TT,var_QX=rev(seq(1,4)/40),cov_QX=0,var_QB=0.05,cov_QB=0)

Fit a TVVARSS model to multivariate time series data

Description

tvvarss is the primary function for fitting TVVARSS models data.

Usage

tvvarss(
  y,
  de_mean = TRUE,
  topo = NULL,
  dynamicB = TRUE,
  family = "gaussian",
  x0 = NULL,
  shared_q = NULL,
  shared_r = NULL,
  process = NULL,
  mcmc_iter = 1000,
  mcmc_warmup = 500,
  mcmc_thin = 1,
  mcmc_chain = 3,
  ...
)

Arguments

y

The data (array, with dimensions = site, year, species)

de_mean

Whether or not to de_mean the process model; defaults to TRUE. For example, Xt+1=Bt(Xtpred[Xt])X_{t+1} = B_{t} (X_{t} - pred[X_{t}]) versus Xt+1=BtXtX_{t+1} = B_{t} X_{t}.

topo

Optional list matrix describing the presumed topology of the community. Pairwise interactions are specified as density-dependent ("dd"), top-down ("td"), bottom-up ("bu"), competitive/facilitative ("cf"), or absent ("zero").

dynamicB

Logical indicator of whether to fit a dynamic B matrix that varies through time (or a static B matrix that does not); defaults to TRUE.

family

Statistical distribution for the observation model, defaults to "gaussian". But can be any of "gaussian", "binomial", "poisson", "gamma", "lognormal"

x0

The location matrix (mean) of priors on initial states; defaults to centered on observed data.

shared_q

Optional matrix (number of species x number of sites) with integers indicating which process variance parameters are shared; defaults to unique process variances for each species that are shared across sites.

shared_r

Optional matrix (number of species x number of sites) with integers indicating which observation variance parameters are shared; defaults to unique observation variances for each species that are shared across sites.

process

Vector that optionally maps sites to states. Defaults to each site as its own state

mcmc_iter

Number of MCMC iterations, defaults to 1000

mcmc_warmup

Warmup / burn in phase, defaults to 500

mcmc_thin

MCMC thin, defaults to 1

mcmc_chain

MCMC chains, defaults to 3

...

Extra arguments to pass to sampling

Value

an object of class 'stanfit'