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Preface

The initial motivation for our work with MARSS models was a collaboration with
Rich Hinrichsen. Rich developed a framework for analysis of multi-site popula-
tion count data using MARSS models and bootstrap AICb (Hinrichsen and Holmes,
2009). Our work (EEH and EJW) extended Rich’s framework, made it more gen-
eral, and led to the development of a parametric bootstrap AICb for MARSS models,
which allows one to do model-selection using datasets with missing values (Ward
et al., 2010; Holmes and Ward, 2010). Later, we developed additional algorithms
for simulation and confidence intervals. Discussions with Mark Scheuerell led to an
extensive revision of the EM algorithm and to the development of a general EM algo-
rithm for constrained MARSS models (Holmes, 2012). Discussions with Mark also
led to a complete rewrite of the model specification so that the package could be used
for MARSS models in general—rather than simply the form of MARSS model used
in our applications. Many collaborators have helped test the package; we thank espe-
cially Yasmin Lucero, Kevin See, and Brice Semmens. Development of the code into
a R package would not have been possible without Kellie Wills, who wrote much of
the original package code outside of the algorithm functions. Finally, we thank the
participants of our MARSS workshops and courses and the MARSS users who have
contacted us regarding issues that were unclear in the manual, errors, or suggestions
regarding new applications. Discussions with these users have helped us improve the
manual and go in new directions.

The application chapters were developed originally as part of workshops on anal-
ysis of multivariate time-series data given at the Ecological Society of America meet-
ings since 2005 and taught by us along with Yasmin Lucero, Stephanie Hampton, and
Brice Semmens. The chapter on extinction estimation and trend estimation was ini-
tially developed by Brice Semmens and later extended by us for this user guide. The
algorithm behind the TMU figure in Chapter 7 was developed during a collaboration
with Steve Ellner (Ellner and Holmes, 2008). Later we further developed the chapters
as part of a course we teach on analysis of fisheries and environmental time-series
data at the University of Washington. You can find online versions of our time-series
analysis course and an eBook from the course on our Applied Time Series Analysis
website http://atsa-es.github.io.

The authors are federal research scientists; EEH and EJW are with NOAA Fish-
eries and MDS is with USGS (and University of Washington). This work was
conducted as part of our jobs with United States federal government agencies. A
CAMEO grant from the National Science Foundation and NOAA Fisheries provided
the initial impetus for the development of the package as part of a research project
with Stephanie Hampton, Lindsay Scheef, and Steven Katz on analysis of marine
plankton time series. During the initial stages of this work, EJW was supported on
a post-doctoral fellowship from the National Research Council and MDS was par-
tially supported by a PECASE award from the White House Office of Science and
Technology Policy.

You are welcome to use the code and adapt it with full attribution. You should use
citation Holmes et al. (2012) for the {MARSS} package. It may not be used in any
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commercial applications nor may it be copyrighted. Use of the EM algorithm should
cite Holmes (2012). Links to more code and publications on MARSS applications
can be found by following the links at our academic websites:

• http://faculty.washington.edu/eeholmes
• http://faculty.washington.edu/scheuerl
• http://faculty.washington.edu/warde



Contents

Part I The MARSS package

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 What does the {MARSS} package do? . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Output: fitted values, residuals, predictions, plots etc . . . . . . . . . . . . . 6
1.3 How to get started (quickly) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Getting your data in right format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Important notes about the algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Other related packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 The main package functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 The MARSS() function: inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The MARSS() function: outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Core functions for fitting a MARSS model . . . . . . . . . . . . . . . . . . . . . 14
2.4 Functions for a fitted marssMLE object . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Functions for marssMODEL objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Algorithms used in the {MARSS} package . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 The full time-varying MARSS model . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Maximum-likelihood parameter estimation . . . . . . . . . . . . . . . . . . . . . 18
3.3 Kalman filter and smoother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 The exact likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Parametric and innovations bootstrapping . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Simulation and forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Part II Fitting models with {MARSS}



VIII Contents

4 The MARSS() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 u, a and π model structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Q, R, Λ model structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 B model structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Z model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Default model structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Short Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1 Fixed and estimated elements in parameter matrices . . . . . . . . . . . . . . 34
5.2 Different numbers of state processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Linear constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Time-varying parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Including inputs (or covariates) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.6 Printing and summarizing models and model fits . . . . . . . . . . . . . . . . 46
5.7 Tidy output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.8 Confidence intervals on a fitted model . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.9 Vectors of just the estimated parameters . . . . . . . . . . . . . . . . . . . . . . . . 48
5.10 Kalman filter and smoother output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.11 Degenerate variance estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.12 Bootstrap parameter estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.13 Data simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.14 Bootstrap AIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.15 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Setting and searching initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1 Fitting a model with a new set of initial conditions . . . . . . . . . . . . . . . 57
6.2 Searching across initial values using a Monte Carlo routine . . . . . . . 62

Part III Applications

7 Count-based population viability analysis (PVA) using corrupted data 69
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Simulated data with process and observation error . . . . . . . . . . . . . . . 70
7.3 Maximum-likelihood parameter estimation . . . . . . . . . . . . . . . . . . . . . 73
7.4 Probability of hitting a threshold Π(xd , te) . . . . . . . . . . . . . . . . . . . . . . 78
7.5 Certain and uncertain regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.6 More risk metrics and some real data . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.7 Confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Combining multi-site data to estimate regional population trends . . . . 89
8.1 Harbor seals in the Puget Sound, WA. . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2 A single well-mixed population with i.i.d. errors . . . . . . . . . . . . . . . . . 91
8.3 Single population with independent and non-identical errors . . . . . . . 95



Contents IX

8.4 Two subpopulations, north and south . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.5 Other population structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9 Identifying spatial population structure and covariance . . . . . . . . . . . . 105
9.1 Harbor seals on the U.S. west coast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.2 Question 1, How many distinct subpopulations? . . . . . . . . . . . . . . . . . 107
9.3 Fit the different models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.4 Summarize the data support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.5 Question 2, Are the subpopulations independent? . . . . . . . . . . . . . . . . 113
9.6 Question 3, Is the Hood Canal independent? . . . . . . . . . . . . . . . . . . . . 116
9.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10 Dynamic factor analysis (DFA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.1 Overview of DFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.2 The data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
10.3 Setting up the model for MARSS() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.4 Using model selection to determine the number of trends . . . . . . . . . 127
10.5 Using varimax rotation to determine the loadings and trends . . . . . . . 130
10.6 Examining model fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
10.7 Adding covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
10.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

11 Analyzing noisy animal tracking data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.1 A simple random walk model of animal movement . . . . . . . . . . . . . . 137
11.2 Loggerhead sea turtle tracking data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
11.3 Estimate locations from the bad tag data . . . . . . . . . . . . . . . . . . . . . . . 139
11.4 Estimate speeds for each turtle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
11.5 Using specialized packages to analyze tag data . . . . . . . . . . . . . . . . . . 145

12 Detection of outliers and structural breaks . . . . . . . . . . . . . . . . . . . . . . . . 147
12.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
12.2 Different models for the Nile flow levels . . . . . . . . . . . . . . . . . . . . . . . 147
12.3 Observation and state residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
12.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

13 Incorporating covariates into MARSS models . . . . . . . . . . . . . . . . . . . . . 159
13.1 Covariates as inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
13.2 Examples using plankton data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
13.3 Observation-error only model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
13.4 Process-error only model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
13.5 Both process- & observation-error model . . . . . . . . . . . . . . . . . . . . . . . 166
13.6 Including seasonal effects in MARSS models . . . . . . . . . . . . . . . . . . . 167
13.7 Model diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
13.8 Covariates with missing values or observation error . . . . . . . . . . . . . . 172



X Contents

14 Estimation of species interaction strengths . . . . . . . . . . . . . . . . . . . . . . . . 177
14.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
14.2 Two-species example using wolves and moose . . . . . . . . . . . . . . . . . . 178
14.3 Some settings to improve performance when estimating B . . . . . . . . 185
14.4 Analysis a four-species plankton community . . . . . . . . . . . . . . . . . . . . 186
14.5 Stability metrics from estimated interaction matrices . . . . . . . . . . . . . 197
14.6 Further information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

15 Combining data from multiple time series . . . . . . . . . . . . . . . . . . . . . . . . 201
15.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
15.2 Salmon spawner surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
15.3 American kestrel abundance indices . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

16 Univariate dynamic linear models (DLMs) . . . . . . . . . . . . . . . . . . . . . . . . 211
16.1 Overview of dynamic linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
16.2 Example of a univariate DLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
16.3 Forecasting with a univariate DLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

17 Multivariate linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
17.1 Univariate linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
17.2 Multivariate response example using longitudinal data . . . . . . . . . . . . 230
17.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

18 Lag-p MARSS models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
18.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
18.2 MAR(2) models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
18.3 MAR(p) models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
18.4 MARSS(p): models with observation error . . . . . . . . . . . . . . . . . . . . . 244
18.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

19 Structural Time Series Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
19.1 Univariate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
19.2 Multivariate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
19.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

20 Comparison to the {KFAS} Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
20.1 Nile River example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
20.2 Global temperature example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
20.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Part IV Appendices

A Package MARSS: Warnings and errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

B Package MARSS: Object structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307



Contents XI

C Model specification in the core functions . . . . . . . . . . . . . . . . . . . . . . . . . . 311
C.1 The fixed and free components of the model parameters . . . . . . . . . . 311
C.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
C.3 Limits on the model forms that can be fit . . . . . . . . . . . . . . . . . . . . . . . 314

D Textbooks and articles that use MARSS modeling for population
modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319





Part I

The MARSS package





1

Overview

MARSS stands for Multivariate Auto-Regressive(1) State-Space. The {MARSS}
package is an R package1 for estimating the parameters of linear MARSS models
with Gaussian errors. This class of model is extremely important in the study of
linear stochastic dynamical systems, and these models are important in many dif-
ferent fields, including economics, engineering, genetics, physics and ecology (Ap-
pendix D). The model class has different names in different fields, for example in
some fields they are termed dynamic linear models (DLMs) or vector autoregressive
(VAR) state-space models. The {MARSS} package allows you to easily fit time-
varying constrained and unconstrained MARSS models with or without covariates
to multivariate time-series data via maximum-likelihood using primarily an EM al-
gorithm2.

A full MARSS model, with Gaussian errors, takes the form:

xt = Btxt−1 +ut +Ctct +Gtwt , where wt ∼ MVN(0,Qt) (1.1a)
yt = Ztxt +at +Dtdt +Htvt , where vt ∼ MVN(0,Rt) (1.1b)

x1 ∼ MVN(π,Λ) or x0 ∼ MVN(π,Λ) (1.1c)

The x equation is termed the state process and the y equation is termed the observa-
tion process. Data enter the model as the y; that is the y is treated as the data although
there may be missing data. The ct and dt are inputs (aka, exogenous variables, co-
variates or indicator variables). The Gt and Ht are also typically inputs (fixed values
with no missing values).

The bolded terms are matrices with the following definitions:

x is a m × T matrix of states. Each xt is a realization of the random variable Xt at
time t.

w is a m×T matrix of the process errors. The process errors at time t are multivariate
normal with mean 0 and covariance matrix Qt .

1 The curly brackets are used to denote an R package.
2 Fitting via the BFGS algorithm is also provided using R ’s optim() function, but this is

not the focus of the package.
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y is a n×T matrix of the observations. Some observations may be missing.
v is a n×T column vector of the non-process errors. The observation errors at time

t are multivariate normal with mean 0 and covariance matrix Rt .
Bt and Zt are parameters and are m×m and n×m matrices.
ut and at are parameters and are m×1 and n×1 column vectors.
Qt and Rt are parameters and are g×g (typically m×m) and h×h (typically n×n)

variance-covariance matrices.
π is either a parameter or a fixed prior. It is a m×1 matrix.
Λ is either a parameter or a fixed prior. It is a m×m variance-covariance matrix.
Ct and Dt are parameters and are m× p and n×q matrices.
c and d are inputs (no missing values) and are p×T and q×T matrices.
Gt and Ht are inputs (no missing values) and are m×g and n×h matrices.

In some fields, the u and a terms are routinely set to 0 or the model is written
in such a way that they are incorporated into B or Z. However, in other fields, the
u and a terms are the main objects of interest, and the model is written to explicitly
show them. We include them throughout our discussion, but they can be set to zero
if desired.

AR(p) models can be written in the above form by properly defining the x vector
and setting some of the R variances to zero; see Chapter 18. Although the model
appears to only include i.i.d. errors (vt and wt ), in practice, AR(p) errors can be
included by moving the error terms into the state model. Similarly, the model appears
to have independent process (vt ) and observation (wt ) errors, however, in practice,
these can be modeled as identical or correlated by using one of the state processes
to model the errors with the B matrix set appropriately for AR or white noise—
although one may have to fix many of the parameters associated with the errors to
have an identifiable model. Study the application chapters and textbooks on MARSS
models (Appendix D) for examples of how a wide variety of autoregressive models
can be written in MARSS form.

1.1 What does the {MARSS} package do?

Written in an unconstrained form3, a MARSS model can be written out as follows.
Two state processes (x) and three observation processes (y) are used here as an ex-
ample.

3 meaning all the elements in a parameter matrices are allowed to be different and none
constrained to be equal or related.
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However not all parameter elements can be estimated simultaneously. Con-
straints are required in order to specify a model with a unique solution. The {MARSS}
package allows you to specify constraints by fixing elements in a parameter matrix
or specifying that some elements are estimated—and have a linear relationship to
other elements. Here is an example of a MARSS model with fixed and estimated
parameter elements:
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Notice that some elements are fixed (in this case to 0, but could be any fixed number),
some elements are shared (have the same value), and some elements are linear com-
binations of other estimated values (c, 1+2d +3c and 2+3d are linear combinations
of c and d).

The {MARSS} package fits models via maximum likelihood. The package is un-
usual among packages for fitting MARSS models in that fitting is performed via a
constrained EM algorithm (Holmes, 2012) based on a vectorized form of Equation
1.1 (See Chapter 3 for the vectorized form used in the algorithm). Although fitting via
the BFGS algorithm is also provided using method="BFGS" and the optim() func-
tion in R , the examples in this guide use the EM algorithm primarily because it gives
robust estimation for datasets replete with missing values and for high-dimensional
models with various constraints. However, there are many models/datasets where
BFGS is faster and we typically try both for problems. The EM algorithm is also
often used to provide initial conditions for the BFGS algorithm (or an MCMC rou-
tine) in order to improve the performance of those algorithms. In addition to the
main model fitting function, the {MARSS} package supplies functions for bootstrap
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and approximate confidence intervals, parametric and non-parametric bootstrapping,
model selection (AIC and bootstrap AIC), simulation, and bootstrap bias correction.

1.2 Output: fitted values, residuals, predictions, plots etc

MARSS models are used in many different ways and different users will want differ-
ent types of output. Some users will want the parameter estimates while others want
the smoothed states and others want to use MARSS models to interpolate missing
values and want the expected values of missing data.

The best way to find out how to get output is to type ?print.MARSS at the com-
mand line after installing {MARSS}. The print help page discusses how to get pa-
rameter estimates in different forms, the smoothed and filtered states, all the Kalman
filter and smoother output, all the expectations of y (missing data), confidence inter-
vals and bias estimates for the parameters, and standard errors of the states. If you
are looking only for Kalman filter and smoother output, see the relevant section in
Chapter 3 and see the help page for the MARSSkf() function (type ?MARSSkf at the
R command line).

The tidy() and glance() functions will summarize commonly needed output
from a MARSS() model fit.

1.3 How to get started (quickly)

If you already work with models in the form of Equation 1.1, you can immediately
fit your model with the {MARSS} package. Install the {MARSS} package and then
type library(MARSS) at the command line to load the package. Look at the Quick
Start Guide and then skim through Chapter 5. Appendix C also has many examples
of how to specify different forms for your parameter matrices.

1.4 Getting your data in right format

Your data need to be a matrix, not data frame, with time across the columns (n × T
matrix). Note a univariate or multivariate ts (time-series) object can also be used and
this will be converted to a n × T matrix. The {MARSS} functions assume discrete
time steps and you will need a column for each time step. Replace any missing time
steps with NA. Write your model down on paper and identify which parameters
correspond to which parameter matrices in Equation 1.1. Call the MARSS() function
(Chapter 4) using your data and using the model argument to specify the structure of
each parameter.
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1.4.1 Getting a ts object into the right form

A R ts object (time series object) stores information about the time steps of the data
and often seasonal information (the quarter or month). You can pass in your data
as a ts object and MARSS() will convert this to matrix form. However if you have
your data in ts form, then you may be using year and season (quarter, month) as
covariates to estimate trend and seasonality. Here is how to get your ts into the form
that MARSS() wants with a matrix of covariates for season.

Univariate example. This converts a univariate ts object with year and quarter
into a matrix with a row for the response (here called Temp), year, and quarter.

z = ts(rnorm(10), frequency = 4, start = c(1959, 2))
dat = data.frame(Yr = floor(time(z) + .Machine$double.eps),

Qtr = cycle(z), Temp=z)
dat = t(dat)

When you call MARSS(), dat["Temp",] is the data. dat[c("Yr","Qtr"),] are
your covariates.

Multivariate example. In this example, we have two temperature readings and a
salinity reading. The data are monthly.

z <- ts(matrix(rnorm(300), 100, 3), start = c(1961, 1),
frequency = 12, names=c("Temp1","Temp2","Sal"))

dat = data.frame(Yr = floor(time(z) + .Machine$double.eps),
Month = cycle(z), z)

When you call MARSS(), dat[c("Temp1","Temp2"),] are the data and your co-
variates are dat[c("Yr","Month","Sal"),].

See the chapters that discuss seasonality for examples of how to model seasonal-
ity. The brute force method of treating month or quarter as a factor requires estima-
tion of more parameters than necessary in many cases.

1.5 Important notes about the algorithms

Specification of a properly constrained model with a unique solution is the respon-
sibility of the user. {MARSS} includes a number of checks to catch some cases of
unsolvable models, but there are many othere cases where there is no way to tell
if you have specified an insufficiently constrained model—with correspondingly an
infinite number of solutions.

How do you know if the model is properly constrained? If you are using a
MARSS model form that is widely used, then you can probably assume that it is
properly constrained. If you go to papers where someone developed the model or
method, the issue of constraints necessary to ensure “identifiability” will likely be
addressed if it is an issue. Are you fitting novel MARSS models? Then you will need
to do some study on identifiability in this class of models using textbooks (Appendix
D). Often textbooks do not address identifiability explicitly. Rather it is addressed
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implicitly by only showing a model constructed in such a way that it is identifi-
able. In our work, if we suspect identification problems, we will often first do a
Bayesian analysis with flat priors and look for oddities in the posteriors, such as
ridges, plateaus or bimodality.

All the EM code in the {MARSS} package is currently in native R . Thus the
model fitting is slow. The classic Kalman filter/smoother algorithm, as shown in
Shumway and Stoffer (2006, p. 331-335), is based on the original smoother pre-
sented in Rauch (1963). This Kalman filter is provided in function MARSSkfss, but
the default Kalman filter and smoother used in the {MARSS} package is based on the
algorithm in Kohn and Ansley (1989) and papers by Koopman et al. This Kalman
filter and smoother is provided in the {KFAS} package (Helske 2012). Table 2 in
Koopman (1993) indicates that the classic algorithm is 40-100 times slower than the
algorithm given in Kohn and Ansley (1989), Koopman (1993), and Koopman et al.
(1999). The {MARSS} package function MARSSkfas provides a translator between
the model objects in {MARSS} and those in {KFAS} so that the {KFAS} functions
can be used. MARSSkfas also includes a lag-one covariance smoother algorithm as
this is not output by the {KFAS} functions, and it provides proper formulation of the
priors so that one can use the {KFAS} functions when the prior on the states is set
at t = 0 instead of t = 1. Simply off-setting your data to start at t=2 and sending that
value to tinit = 1 in the {KFAS} Kalman filter would not be mathematically correct!

EM algorithms will quickly get in the vicinity of the maximum likelihood, but
the final approach to the maximum is generally slow relative to quasi-Newton meth-
ods. On the flip side, EM algorithms are quite robust to initial conditions choices and
can be extremely fast at getting close to the MLE values for high-dimensional mod-
els. The {MARSS} package also allows one to use the BFGS method to fit MARSS
models, thus one can use an EM algorithm to “get close” and then the BFGS al-
gorithm to polish off the estimate. Restricted maximum-likelihood algorithms are
also available for AR(1) state-space models, both univariate (Staples et al., 2004)
and multivariate (Hinrichsen and Holmes, 2009). REML can give parameter esti-
mates with lower variance than plain maximum-likelihood algorithms. However, the
algorithms for REML when there are missing values are not currently available (al-
though that will probably change in the near future). Another maximum-likelihood
method is data-cloning which adapts MCMC algorithms used in Bayesian analysis
for maximum-likelihood estimation (Lele et al., 2007).

Missing values are seamlessly accommodated with the {MARSS} package. Sim-
ply specify missing data with NAs. The likelihood computations are exact and will
deal appropriately with missing values. However, no innovations4 bootstrapping can
be done if there are missing values. Instead parametric bootstrapping must be used.

You should be aware that maximum-likelihood estimates of variance in MARSS
models are fundamentally biased, regardless of the algorithm used. This bias is more
severe when one or the other of R or Q is very small, and the bias does not go to
zero as sample size goes to infinity. The bias arises because variance is constrained
to be positive. Thus if R or Q is essentially zero, the mean estimate will not be zero

4 referring to the non-parametric bootstrap developed by Stoffer and Wall (1991).
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and thus the estimate will be biased high while the corresponding bias of the other
variance will be biased low. You can generate unbiased variance estimates using a
bootstrap estimate of the bias. The function MARSSparamCIs() will do this. How-
ever be aware that adding an estimated bias to a parameter estimate will lead to an
increase in the variance of your parameter estimate. The amount of variance added
will depend on sample size.

You should also be aware that mis-specification of the prior on the initial states
(π and Λ) can have catastrophic effects on your parameter estimates if your prior
conflicts with the distribution of the initial states implied by the MARSS model.
These effects can be very difficult to detect because the model will appear to be well-
fitted. Unless you have a good idea of what the parameters should be, you might not
realize that your prior conflicts.

The most common problems we have found with priors on x0 are the following.
Problem 1) The correlation structure in Λ (whether the prior is diffuse or not) does
not match the correlation structure in x0 implied by your model. For example, you
specify a diagonal Λ (independent states), but the implied distribution has correla-
tions. Problem 2) The correlation structure in Λ does not match the structure in x0
implied by constraints you placed on π. For example, you specify that all values in π
are shared, yet you specify that Λ is diagonal (independent).

Unfortunately, using a diffuse prior does not help with these two problems be-
cause the diffuse prior still has a correlation structure and can still conflict with the
implied correlation in x0. One way to get around these problems is to set Λ = 0 (a
m×m matrix of zeros) and estimate π ≡ x0 only. Now π is a fixed but unknown (es-
timated) parameter, not the mean of a distribution. In this case, Λ does not exist in
your model and there is no conflict with the model. Be aware however that estimat-
ing π as a parameter is not always robust. If you specify that Λ=0 and specify that
π corresponds to x0, but your model “explodes” when run backwards in time, you
cannot estimate π because you cannot get a good estimate of x0. Sometimes this can
be avoided by specifying that π corresponds to x1 so that it can be constrained by the
data y1.

In summary, if the implied correlation structure of your initial states is indepen-
dent (diagonal variance-covariance matrix), you should generally be ok with a di-
agonal and high variance prior or with treating the initial states as parameters (with
Λ = 0). But if your initial states have an implied correlation structure that is not in-
dependent, then proceed with caution. ‘With caution’ means that you should assume
you have problems and test how your model fits with simulated data.

There is a large class of models in the statistical finance literature that have the
form

xt+1 = Bxt +Γηt

yt = Zxt +ηt

For example, ARMA(p,q) models can be written in this form. The MARSS model
framework in this package will not allow you to write models in that form. You
can put the ηt into the xt vector and set R = 0 to make models of this form using
the MARSS form, but the EM algorithm in the {MARSS} package won’t let you



10 1 Overview

estimate parameters because the parameters will drop out of the full likelihood being
maximized in the algorithm. You can try using BFGS by passing in the method
argument to the MARSS() call.

1.6 Troubleshooting

Numerical errors due to ill-conditioned matrices are not uncommon when fitting
MARSS models. The Kalman and EM algorithms need inverses of matrices. If those
matrices become ill-conditioned, for example all elements are close to the same
value, then the algorithm becomes unstable. Warning messages will be printed if
the algorithms are becoming unstable and you can set control$trace=1, to see de-
tails of where the algorithm is becoming unstable. Whenever possible, you should
avoid using shared π values in your model5. The way our algorithm deals with Λ
tends to make this case unstable, especially if R is not diagonal. In general, estima-
tion of a non-diagonal R is more difficult, more prone to ill-conditioning, and more
data-hungry.

You may also see non-convergence warnings, especially if your MLE model
turns out to be degenerate. This means that one of the elements on the diagonal
of your Q or R matrix are going to zero (are degenerate). It will take the EM al-
gorithm forever to get to zero. BFGS will have the same problem, although it will
often get a bit closer to the degenerate solution. If you are using method="kem",
MARSS() will warn you if it looks like the solution is degenerate. If you use
control=list(allow.degen=TRUE), the EM algorithm will attempt to set the de-
generate variances to zero (instead of trying to get to zero using an infinite number
of iterations). However, if one of the variances is going to zero, first think about why
this is happening. This is typically caused by one of three problems: 1) you made a
mistake in inputting your data, e.g., used -99 as the missing value in your data but did
not replace these with NAs before passing to MARSS(), 2) your data are not sufficient
to estimate multiple variances or 3) your data are inconsistent with the model you
are trying to fit.

The algorithms in the {MARSS} package are designed for cases where the Q
and R diagonals are all non-minuscule. For example, the EM update equation for
u will grind to a halt (not update u) if Q is tiny (like 1E-7). Conversely, the BFGS
equations are likely to miss the maximum-likelihood when R is tiny because then
the likelihood surface becomes hyper-sensitive to π. The solution is to use the EM
update equations with the degenerate likelihood function. MARSS() will implement
this automatically by trying to set Q and R diagonal terms to zero if they are going
to zero6.

One odd case can occur when R goes to zero (a matrix of zeros), but you are
estimating π. If model$tinitx=1, then π = x0

1 and y1 − Zx0
1 can go to 0 as well as

var(y1 −Zx0
1) by driving R to zero. But as this happens, the log-likelihood associated

5 An example of a π with shared values is π =
[a

a
a

]
.

6 You can turn off this behavior by passing in control=list(allow.degen=FALSE).
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with y1 will go (correctly) to infinity and thus the log-likelihood goes to infinity. But
if you set R = 0, the log-likelihood will be finite. The reason is that R ≈ 0 and R = 0
specify different likelihoods associated with y1 −Zx0

1. With R = 0, y1 −Zx0
1 does not

have a distribution; it is just a fixed value. So there is no likelihood to go to infinity.
If some elements of the diagonal of R are going to zero, you should be suspect of
the parameter estimates. Sometimes the structure of your data, e.g., one data value
followed by a long string of missing values, is causing an odd spike in the likelihood
at R ≈ 0. Try manually setting R equal to zero to get the correct log-likelihood7.

1.7 Other related packages

Packages that will do Kalman filtering and smoothing are many, but packages that
estimate the parameters in a MARSS model, especially constrained MARSS models,
are much less common. The following are those with which we are familiar, however
there are certainly more packages for estimating MARSS models in engineering and
economics of which we are unfamiliar. The {MARSS} package is unusual in that
it uses an EM algorithm for maximizing the likelihood as opposed to a Newton-
esque method (e.g., BFGS). The package is also unusual in that it allows you to
specify the initial conditions at t = 0 or t = 1 qne allows degenerate models (with
some of the diagonal elements of R or Q equal to zero). Lastly, model specification
in the {MARSS} package has a one-to-one relationship between the model list in
MARSS and the model as you would write it on paper (in matrix form). However,
the {MARSS} package has not been optimized for speed and probably will be very
slow if you have time-series data with many time points.

atsar atsar is an R package we wrote for fitting MARSS models using STAN. It
allows fast and flexible fitting of MARSS models in a Bayesian framework. Our
book from our time-series class has example applications Applied Time-Series
Analysis for Fisheries and Environmental Sciences.

stats The {stats} package (part of base R ) has functions for fitting univariate struc-
tural time series models (MARSS models with a univariate y). Read the help
file at ?StructTS. The Kalman filter and smoother functions are described here:
?KalmanLike.

DLM DLM is an R package for fitting MARSS models. It is mainly Bayesian fo-
cused but it also allows MLE estimation via the optim() function. It has a book,
Dynamic Linear Models with R by Petris et al., which has many examples of
how to write MARSS models for different applications.

sspir sspir an R package for fitting ARSS (univariate) models with Gaussian, Pois-
son and binomial error distributions.

dse dse (Dynamic Systems Estimation) is an R package for multivariate Gaussian
state-space models with a focus on ARMA models.

7 The likelihood returned when R ≈ 0 is not incorrect. It is just not the likelihood that you
probably want. You want the likelihood where the R term is dropped because it is zero.
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SsfPack SsfPack is a package for Ox/Splus that fits constrained multivariate Gaus-
sian state-space models using mainly (it seems) the BFGS algorithm but the
newer versions support other types of maximization. SsfPack is very flexible
and written in C to be fast. It has been used extensively on statistical finance
problems and is optimized for dealing with large (financial) data sets. It is used
and documented in Time Series Analysis by State Space Methods by Durbin
and Koopman, An Introduction to State Space Time Series Analysis by Com-
mandeur and Koopman, and Statistical Algorithms for Models in State Space
Form: SsfPack 3.0, by Koopman, Shephard, and Doornik.

Brodgar The Brodgar software was developed by Alain Zuur to do (among many
other things) dynamic factor analysis, which involves a special type of MARSS
model. The methods and many example analyses are given in Analyzing Eco-
logical Data by Zuur, Ieno and Smith. This package also uses an EM algorithm
for parameter estimation.

eViews eViews is a commercial economics software that will estimate at least some
types of MARSS models.

KFAS The KFAS R package provides a fast Kalman filter and smoother. Examples
in the package show how to estimate MARSS models using the {KFAS} func-
tions and R ’s optim() function. The {MARSS} package uses the filter and
smoother functions from the {KFAS} package.

S+FinMetrics S+FinMetrics is a S-plus module for fitting MAR models, which are
called vector autoregressive (VAR) models in the economics and finance liter-
ature. It has some support for state-space VAR models. It was developed by
Andrew Bruce, Doug Martin, Jiahui Wang, and Eric Zivot, and it has a book as-
sociated with it: Modeling Financial Time Series with S-plus by Eric Zivot and
Jiahui Wang.
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The main package functions

The {MARSS} package is object-based. It has two main types of objects: a model
object (class marssMODEL) and a maximum-likelihood fitted model object (class
marssMLE). A marssMODEL object specifies the structure of the model to be fitted.
It is an R code version of the MARSS equation (Equation 1.1). A marssMLE object
specifies both the model and the information necessary for fitting (initial conditions,
controls, method). If the model has been fitted, the marssMLE object will also have
the parameter estimates and (optionally) confidence intervals and bias.

2.1 The MARSS() function: inputs

The function MARSS() is an interface to the core fitting functions in the {MARSS}
package. It allows a user to fit a MARSS model using a list to describe the model
structure. It returns marssMODEL and marssMLE objects which the user can later
use in other functions, e.g., simulating or computing bootstrap confidence intervals.

MLEobj=MARSS(data, model=list(), ..., fit=TRUE) This function will fit a
MARSS model to the data using a model list which is a list describing the
structure of the model parameter matrices. In the default model, i.e., if you use
MARSS(dat) with no model argument, Z and B are the identity matrix, R is
a diagonal matrix with one variance, Q is a diagonal matrix with unique vari-
ances, u is unique, a is scaling, and C, c, D, and d are all zero. The output is a
marssMLE object where the estimated parameter matrices are in MLEobj$par.
If fit=FALSE, it returns a minimal marssMLE object that is ready for passing to
a fitting function (below) but with no par element.

2.2 The MARSS() function: outputs

The marssMLE object returned by a MARSS() call includes the estimated parameters,
states, and expected values of any missing data. Derived statistics, such as confidence
intervals and standard errors, can be computed using the functions described below.
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estimated parameters coef(MLEobj) The coef function can output parameters in a
variety of formats, such as a list of matrices versus a vector of the estimates. See
?coef.marssMLE.

residuals residuals(MLEobj). See ?MARSSresiduals for a discussion of stan-
dardized residuals in the context of MARSS models.

Kalman filter and smoother output tsSmooth(MLEobj). The smoothed states are in
MLEobj$states. tsSmooth(MLEobj) provides filter and smoother output as a
data frame, but the full Kalman filter and smoother output is available in matrix
form from MARSSkf(MLEobj). See ?MARSSkf for a discussion of the Kalman fil-
ter and smoother outputs. If you just want the estimated states conditioned on all
the data, use tsSmooth(MLEobj); you can pass in interval="confidence".

expected value of missing y tsSmooth(MLEobj, type="ytT") returns these as a
data frame. MARSShatyt(MLEobj) returns the same (and much more) as matri-
ces. See ?MARSShatyt for a discussion of the expectations involving Y.

log-likelihood logLik(MLEobj) returns the log-likelihood.
AIC AIC(MLEobj) ({stats} package) returns the uncorrected AIC. Use MLEobj$AICc

to return the small sample size corrected AIC.

Note the print method for marssMLE objects will print or compute all the fre-
quently needed output using the what= argument in the print call. Type ?print.MARSS
at the R command line to see the print help file which will also point you to the more
standard functions (like coef()).

2.3 Core functions for fitting a MARSS model

The following core functions are designed to work with ‘unfitted’ marssMLE objects,
that is a marssMLE object without the par element. Users do not normally need
to call the MARSSkem() or MARSSoptim() functions since MARSS() will call those.
Note, these functions can be called with a marssMLE object with a par element, but
these functions will overwrite that element.

MLEobj=MARSSkem(MLEobj) This will fit a MARSS model via the EM algorithm to
the data using a properly specified marssMLE object, which has data, the marss-
MODEL object and the necessary initial condition and control elements. See the
appendix on the object structures in the {MARSS} package. MARSSkem() does
no error-checking. See is.marssMLE() for error-checking. MARSSkem() uses
MARSSkf() described below.

MLEobj=MARSSoptim(MLEobj) This will fit a MARSS model via the BFGS algo-
rithm provided in optim(). This requires a properly specified marssMLE object,
such as would be passed to MARSSkem().

is.marssMLE(MLEobj) This will check that a marssMLE object is properly speci-
fied and ready for fitting. This should be called before MARSSkem() or MARSSoptim()
is called. This function is not typically needed if using MARSS() since MARSS()
builds the model object for the user and does error-checking on model structure.



2.4 Functions for a fitted marssMLE object 15

2.4 Functions for a fitted marssMLE object

The following functions use a marssMLE object that has a populated par ele-
ment, i.e., a marssMLE object returned from one of the fitting functions (MARSS(),
MARSSkem(), MARSSoptim()). Below MODELobj means the argument is a marss-
MODEL object and MLEobj means the argument is a marssMLE object. Type
?function.name to see information on function usage and examples.

standard functions The standard R functions for fitted objects are provided: residuals(),
fitted(), logLik(), AIC(), coef(), predict() and tsSmooth().

summary functions Standard functions for printing output are also available: summary()
and print() along with ‘tidyverse’ output: tidy() and glance().

In addition, the following are special functions for {MARSS} fitted models:

kf=MARSSkf(MLEobj) This will compute the expected values of the hidden states
given data via the Kalman filter (to produce estimates conditioned on the data
from t = 1 to t − 1) and the Kalman smoother (to produce estimates condi-
tioned on data from t = 1 to t = T ). The function also returns the exact like-
lihood of the data conditioned on MLEobj$par. A variety of other Kalman fil-
ter/smoother information is also output (kf is a list of output); see ?MARSSkf for
details. tsSmooth.marssMLE() returns this information as a data frame that is
ggplot() friendly.

MLEobj=MARSSaic(MLEobj) This adds model selection criteria, AIC, AICc, and
AICb, to a marssMLE object. Note, AIC and AICc are added to marssMLE
objects by the MARSS() function but AICb is not.

boot=MARSSboot(MLEobj) This returns a list containing bootstrapped parameters
and data via parametric or innovations bootstrapping.

MLEobj=MARSShessian(MLEobj) This adds the Hessian matrix for the estimated
parameters to a marssMLE object. The default algorithm is the analytical solu-
tion for the Hessian. See ?MARSShessian.

MLEobj=MARSSparamCIs(MLEobj) This adds standard errors, confidence intervals,
and bootstrap estimated bias for the maximum-likelihood parameters using boot-
strapping or the Hessian to the marssMLE object.

sim.data=MARSSsimulate(MLEobj) This returns simulated data from a MARSS
model specified via a list of parameter matrices in MLEobj$parList (this is a
list with elements Q, R, U, etc.).

paramVec=MARSSvectorizeparam(MLEobj) This returns the estimated (and only
the estimated) parameters as a vector. This is useful for storing the results of
simulations or for writing functions that fit MARSS models using R ’s optim
function. coef(MLEobj) will return the same vector.

new.MLEobj=MARSSvectorizeparam(MLEobj, paramVec) This will return a marssMLE
object in which the estimated parameters (which are in MLEobj$par) are re-
placed with the values in paramVec.
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2.5 Functions for marssMODEL objects

is.marssMODEL(MODELobj) This will check that the free and fixed matrices in
a marssMODEL object are properly specified. This function is not typically
needed if using MARSS() since MARSS() builds the marssMODEL object for
the user and does error-checking on model structure.

summary(MODELobj) This will print the model parameter matrices showing the
fixed values (in parentheses) and the location of the estimated elements. The
estimated elements are shown as g1, g2, g3, ... which indicates which elements
are shared, i.e., forced to have the same value. For example, an i.i.d. R matrix
would appear as a diagonal matrix with just g1 on the diagonal.
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Algorithms used in the {MARSS} package

3.1 The full time-varying MARSS model

In mathematical form, the model that is being fit with the package is

xt = (x⊤
t−1 ⊗ Im)vec(Bt)+(u⊤

t ⊗ Im)vec(Ut)+wt , Wt ∼ MVN(0,Qt)

yt = (x⊤
t ⊗ In)vec(Zt)+(a⊤

t ⊗ In)vec(At)+vt , Vt ∼ MVN(0,Rt)

xt0 = π+F ≪,L ∼ MVN(0,Λ)

(3.1)

Each model parameter matrix, Bt , Ut , Qt , Zt , At , and Rt , is written as a time-varying
linear model, ft +Dtm, where f and D are fully-known (not estimated and no missing
values) and m is a column vector of the estimates elements of the parameter matrix:

vec(Bt) = ft,b +Dt,bβββ vec(Ut) = ft,u +Dt,uυυυ vec(Qt) = ft,q +Dt,qq
vec(Zt) = ft,z +Dt,zζζζ vec(At) = ft,a +Dt,aααα vec(Rt) = ft,r +Dt,rr

vec(Λ) = fλ +Dλλλλ vec(π) = fπ +Dπp

The internal model specification (element $marss in a fitted marssMLE object
output by a MARSS() call) is a list with the ft (“fixed") and Dt (“free") matrices for
each parameter. The output from fitting are the vectors, βββ, υυυ, etc. The trick is to
rewrite the user’s linear multivariate problem into the general form (Equation 3.1).
MARSS does this using functions that take more familiar arguments as input and
then constructs the ft and Dt matrices. Because the ft and Dt can be whatever the
user wants (assuming they are the right shape), this allows users to include covariates,
trends (linear, sinusoidal, etc) or indicator variables in a variety of ways. It also means
that terms like 1+b+2c can appear in the parameter matrices.

Although the above form looks unusual, it is equivalent to the commonly seen
form but leads to a log-likelihood function where all terms have form Mm, where
M is a matrix and m is a column vector of only the different estimated values. This
makes it easy to do the partial differentiation with respect to m necessary for the
EM algorithm and as a result, easy to impose linear constraints and structure on the
elements in a parameter matrix (Holmes, 2012).
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3.2 Maximum-likelihood parameter estimation

3.2.1 EM algorithm

Function MARSSkem() in the {MARSS} package provides a maximum-likelihood
algorithm for parameter estimation based on an Expectation-Maximization (EM)
algorithm (Holmes, 2012). EM algorithms are widely used algorithms that extend
maximum-likelihood estimation to cases where there are hidden random variables in
a model (Dempster et al., 1977; Harvey, 1989; Harvey and Shephard, 1993; McLach-
lan and Krishnan, 2008). Expectation-Maximization algorithms for unconstrained
MARSS models have been around for many years and algorithms for certain con-
strained cases have also been published. What makes the EM algorithm in MARSS
different is that it is a general constrained algorithm that allows generic linear con-
straints among matrix elements (thus allows fixed, shared and linear combinations of
estimated elements).

The EM algorithm finds the maximum-likelihood estimates of the parameters in a
MARSS model using an iterative process. Starting with an initial set of parameters1,
which we will denote Θ̂1, an updated parameter set Θ̂2 is obtaining by finding the
Θ̂2 that maximizes the expected value of the likelihood over the distribution of the
states (X) conditioned on Θ̂1. This distributon of states is computed via the Kalman
smoother (Section 3.3). Mathematically, each iteration of an EM algorithm does this
maximization:

Θ̂2 = argmax
Θ

EX|Θ̂1
[logL(Θ|Y = yT

1 ,X)]

Then using Θ̂2, the distibution of X conditioned on Θ̂2 is computed. Then that dis-
tibution along with Θ̂2 in place of Θ̂1 is used in Equation ?? to produce an updated
parameter set Θ̂3. This is repeated until the expected log-likelihood stops increasing
(or increases less than some set tolerance level).

Implementing this algorithm is straight-forward, hence its popularity.

1. Set an initial set of parameters, Θ̂1
2. E step: using the model for the hidden states (X) and Θ̂1, calculate the expected

values of X conditioned on all the data yT
1 ; this is xtT output by the Kalman

smoother (function MARSSkf()). Also calculate expected values of any functions
of X (or Y if there are missing Y values) that appear in your expected log-
likelihood function.

3. M step: put those E[X|Y = yT
1 ,Θ̂1] and E[g(X)|Y = yT

1 ,Θ̂1] into your expected
log-likelihood function in place of X (and g(X)) and maximize with respect to
Θ. This gives you Θ̂2.

4. Repeat the E and M steps until the log likelihood stops increasing.

The EM equations used in the {MARSS} package (function MARSSkem()) are
described in Holmes (2012) and are extensions of those in Shumway and Stoffer

1 You can choose these however you wish, however choosing something not too far off from
the correct values will make the algorithm go faster.
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(1982) and Ghahramani and Hinton (1996). Our EM algorithm is an extended ver-
sion because our algorithm is for cases where there are constraints within the param-
eter matrices (shared values, linear combinations, diagonal structure, block-diagonal
structure, ...), where there are fixed values within the parameter matrices, or where
there may be 0s on the diagonal of Q, R and Λ.

The EM algorithm is a hill-climbing algorithm and like all hill-climbing algo-
rithms can get stuck on local maxima. See Chapter 6 for a discussion on how to
implement a Monte-Carlo initial conditions search based on Biernacki et al. (2003)
to minimize this problem. EM algorithms are also known to get close to the maxi-
mum very quickly but then creep toward the absolute maximum. Once in the vicinity
of the maximum, quasi-Newton methods find the absolute maximum much faster,
but they can be sensitive to initial conditions. In practice, we have found the EM
algorithm to be much faster for some types of MARSS models while BFGS is faster
for others, so often we will try both.

3.3 Kalman filter and smoother

The Kalman filter (Kalman, 1960) is a recursive algorithm that solves for the ex-
pected value of the hidden states (the X) in a MARSS model (Equation 1.1) at time
t conditioned on the data up to time t: E[Xt |yt

1]. The Kalman filter gives the opti-
mal (lowest mean square error) estimate of the unobserved xt based on the observed
data up to time t for this class of linear dynamical system. The Kalman smoother
(Rauch et al., 1965) solves for the expected value of the hidden state(s) conditioned
on all the data: E[Xt |yT

1 ]. If the errors in the stochastic process are Gaussian, then
the estimators from the Kalman filter and smoother are also the maximum-likelihood
estimates.

However, even if the the errors are not Gaussian, the estimators are optimal in
the sense that they are estimators with the least variability possible. This robustness
is one reason the Kalman filter is so powerful—it provides well-behaving estimates
of the hidden states for all kinds of multivariate autoregressive processes, not just
Gaussian processes. The Kalman filter and smoother are widely used in time-series
analysis, and there are many textbooks covering it and its applications. In the interest
of giving the reader a single point of reference, we use Shumway and Stoffer (2006)
as our primary reference.

The MARSSkf() function provides the Kalman filter and smoother output us-
ing one of two algorithms (specified by fun.kf). The algorithm in MARSSkfss()
is that shown in Shumway and Stoffer (2006). This algorithm is not computation-
ally efficient; see Koopman et al. (1999, section 4.3) for a more efficient Kalman
filter implementation. The Koopman et al. implementation is provided in the func-
tions MARSSkfas() using the {KFAS} package (Helske, 2017). MARSSkfss() (and
MARSSkfas() with a few exceptions) has the following outputs:

xtt1 The expected value of Xt conditioned on the data up to time t −1.
xtt The expected value of Xt conditioned on the data up to time t.



20 3 Algorithms used in the {MARSS} package

xtT The expected value of Xt conditioned on all the data from time 1 to T . These
are called the smoothed state estimates.

Vtt1 The variance of Xt conditioned on the data up to time t −1. Denoted Pt−1
t in

section 6.2 in Shumway and Stoffer (2006).
Vtt The variance of Xt conditioned on the data up to time t. Denoted Pt

t in section
6.2 in Shumway and Stoffer (2006).

VtT The variance of Xt conditioned on all the data from time 1 to T .
Vtt1T The lag-one covariance of Xt and Xt−1 conditioned on all the data, 1 to T .
Kt The Kalman gain. This is part of the update equations and relates to the amount

xtt1 is updated by the data at time t to produce xtt. Not output by MARSSkfas.
J This is similar to the Kalman gain but is part of the Kalman smoother. See Equa-

tion 6.49 in Shumway and Stoffer (2006). Not output by MARSSkfas.
Innov This has the innovations at time t, defined as εt ≡ yt -E[Yt ]. These are the

residuals, the difference between the data and their predicted values. See Equa-
tion 6.24 in Shumway and Stoffer (2006). Not output by MARSSkfas.

Sigma This has the Σt , the variance-covariance matrices for the innovations at time
t. This is used for the calculation of confidence intervals, the s.e. on the state
estimates and the likelihood. See Equation 6.25 in Shumway and Stoffer (2006)
for the Σt calculation. Not output by MARSSkfas.

logLik The log-likelihood of the data conditioned on the model parameters.

3.4 The exact likelihood

The likelihood of the data given a set of MARSS parameters is part of the output of
the MARSSkfss() and MARSSkfas() functions. The likelihood computation is based
on the innovations form of the likelihood (Schweppe, 1965) and uses the output from
the Kalman filter:

log L(Θ|data) = − N
2log(2π)

− 1
2

(
T

∑
t=1

log |Σt |+
T

∑
t=1

(εt)
⊤Σ−1

t εt

)
(3.2)

where N is the total number of data points, εt is the innovations at time t and |Σt | is
the determinant of the innovations variance-covariance matrix at time t. This likeli-
hood function is shown in Equation 6.62 in Shumway and Stoffer (2006). However
there are a few differences between the log-likelihood output by MARSSkf() and that
described in Shumway and Stoffer (2006).

The standard likelihood calculation (Equation 6.62 in Shumway and Stoffer
(2006)) is biased when there are missing values in the data, and the missing data
modifications discussed in Section 6.4 in Shumway and Stoffer (2006) do not cor-
rect for this bias. Harvey (1989), Section 3.4.7, discusses at length that the standard
missing values correction leads to an inexact likelihood when there are missing val-
ues. The bias is minor if there are few missing values, but it becomes severe as the
number of missing values increases. Many ecological datasets have high fractions
of missing values and this leads to a very biased likelihood if one uses the inexact
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formula. Harvey (1989) provides some non-trivial ways to compute the exact likeli-
hood.

The {MARSS} package uses instead the exact likelihood correction for missing
values that is presented in Section 12.3 in Brockwell and Davis (1991). This solution
is straight-forward to implement. The correction involves the following changes to εt
and Σt in the Equation 3.2. Suppose the value yi,t is missing. First, the corresponding
i-th value of εt is set to 0. Second, the i-th diagonal value of Σt is set to 1 and the
off-diagonal elements on the i-th column and i-th row are set to 0.

3.5 Parametric and innovations bootstrapping

Bootstrapping can be used to construct frequentist confidence intervals on the pa-
rameter estimates (Stoffer and Wall, 1991) and to compute the small-sample AIC
corrector for MARSS models (Cavanaugh and Shumway, 1997); the functions
MARSSparamCIs() and MARSSaic() do these computations.

The MARSSboot() function provides both parametric and innovations bootstrap-
ping of MARSS models. The innovations bootstrap algorithm by Stoffer and Wall
(1991) bootstraps the model residuals (the innovations). This is a semi-parametric
bootstrap since is uses, partially, the maximum-likelihood parameter estimates. This
algorithm cannot be used if there are missing values in the data. Also for short time
series, it gives biased bootstraps because one cannot resample the first few innova-
tions.

MARSSboot() also provides a fully parametric bootstrap. This uses the maximum-
likelihood MARSS parameters to simulate data from which bootstrap parameter
estimates are obtained. Our research (Holmes and Ward, 2010) indicates that this
provides unbiased bootstrap parameter estimates, and it works with datasets with
missing values. Lastly, MARSSboot() can also output parameters sampled from the
Hessian matrix.

3.6 Simulation and forecasting

The MARSSsimulate() function simulates from a fitted marssMLE object (e.g., out-
put from a MARSS() call). It uses rmvnorm() (in package {mvtnorm}) to produce
draws of the process and observation errors from multivariate normal distributions
for each time step.

3.7 Model selection

The package provides the MARSSaic() function (accessed with AIC()) for comput-
ing AIC, AICc and AICb. The latter is a small-sample corrector for autoregressive
state-space models. The bias problem with AIC and AICc for short time-series data
has been shown in Cavanaugh and Shumway (1997) and Holmes and Ward (2010).
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AIC and AICc tend to select overly complex MARSS models when the time-series
data are short. AICb corrects this bias. The algorithm for a non-parametric AICb
is given in Cavanaugh and Shumway (1997). Their algorithm uses the innovations
bootstrap (Stoffer and Wall, 1991), which means it cannot be used when there are
missing data. We added a parametric AICb (Holmes and Ward, 2010), which uses
a parametric bootstrap. This algorithm allows one to compute AICb when there are
missing data and it provides unbiased AIC even for short time series. See Holmes
and Ward (2010) for discussion and testing of parametric AICb for MARSS models.

AICb is comprised of the familiar AIC fit term, −2logL, plus a penalty term that
is the mean difference between the log likelihood the data under the bootstrapped
maximum-likelihood parameter estimates and the log likelihood of the data under
the original maximum-likelihood parameter estimate:

AICb = −2log L(Θ̂|y)+2
(

1
Nb

Nb

∑
i=1

− log
L(Θ̂∗(i)|y)

L(Θ̂|y)

)
(3.3)

where Θ̂ is the maximum-likelihood parameter set under the original data y, Θ̂∗(i)
is a maximum-likelihood parameter set estimated from the i-th bootstrapped data
set y∗(i), and Nb is the number of bootstrap data sets. It is important to notice that
the likelihood in the AICb equation is L(Θ̂∗|y) not L(Θ̂∗|y∗). In other words, we
are taking the average of the likelihood of the original data given the bootstrapped
parameter sets.
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Fitting models with {MARSS}
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The MARSS() function

From the user perspective, the main package function is MARSS(). This fits a MARSS
model (Equation 1.1) to a matrix of data. The function call takes the form:

MARSS(data, model=list(), form="marxss"))

The model argument is a list with names B, U, C, c, Q, Z, A, D, d, R, x0, V0. Elements
can be left off to use default values. The form argument tells MARSS() how to use the
model list elements. The default is form="marxss" which is the model in Equation
1.1.

The data must be passed in as a n × T matrix (time goes across columns) or a
ts object or vector (which will be converted to a n × T matrix with time across the
columns). A data matrix consisting of three time series (n = 3) with six time steps
might look like

y =




1 2 NA NA 3.2 8
2 5 3 NA 5.1 5
1 NA 2 2.2 NA 7




where NA denotes a missing value.
The argument model specifies the structure of the MARSS model. It is a list,

where the list elements for each model parameter specify the form of that parameter.
The most general way to specify model structure is to use a list matrix. The list

matrix allows one to combine fixed and estimated elements in one’s parameter speci-
fication. It allows a one-to-one correspondence between how you write the parameter
matrix on paper and how you specify it in R . For example, let’s say Q and u have
the following forms in your model:

Q =




q 0 0
0 q 0
0 0 1


 and u =




0.05
u1
u2




So Q is a diagonal matrix with the 3rd variance fixed at 1 and the 1st and 2nd es-
timated and equal. The 1st element of u is fixed, and the 2nd and 3rd are estimated
and different. You can specify this using a list matrix:
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Q=matrix(list("q",0,0,0,"q",0,0,0,1),3,3)
U=matrix(list(0.05,"u1","u2"),3,1)

If you print out Q and U, you will see they look exactly like Q and u written above.
MARSS will keep the fixed values fixed and estimate q, u1, and u2.

List matrices allow the most flexible model structures, but MARSS() also has text
shortcuts for a number of common model structures. Below, the possible ways to
specify each model parameter are shown, using m = 3 (the number of hidden state
processes) and n = 3 (number of observation time series).

4.1 u, a and π model structures

u, a and π are all row matrices and the options for specifying their structures are the
same. a has one special option, "scaling" described below. The allowable structures
are shown using u as an example. Note that you should be careful about specifying
shared structure in π because you need to make sure the structure in Λ matches. For
example, if you require that all the π values are shared (equal) then Λ cannot be a
diagonal matrix since that would be saying that the π values are independent, which
they are clearly not if you force them to be equal.

U=matrix(list(),m,1): This is the most general form and allows one to spec-
ify fixed and estimated elements in u. Each character string in u is the name of
one of the u elements to be estimated. For example if U=matrix(list(0.01,"u","u"),3,1),
then u in the model has the following structure:




0.01
u
u




U=matrix(c(),m,1), where the values in c() are all character strings: each
character string is the name of an element to be estimated. For example if
U=matrix(c("u1","u1","u2"),3,1), then u in the model has the following
structure: 


u1
u1
u2




with two values being estimated. U=matrix(list("u1","u1","u2"),3,1) has
the same effect.

U="unequal" or U="unconstrained": Both of these stings indicate that each
element of u is estimated. If m = 3, then u would have the form:




u1
u2
u3
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U="equal": There is only one value in u:



u
u
u




U=matrix(c(),m,1), where the values in c() all numerical values: u is fixed
and has no estimated values. If U=matrix(c(0.01,1,-0.5),3,1), then u in the
model is: 


0.01

1
−0.5




U=matrix(list(0.01,1,-0.5),3,1) would have the same effect.

U="zero": u is all zero: 


0
0
0




The a parameter has a special option, "scaling", which is the default behavior.
In this case, a is treated like a scaling parameter. If there is only one y row as-
sociated with an x row, then the corresponding a element is 0. If there are more
than one y rows associated with an x row, then the first a element is set to 0 and
the others are estimated. For example, say m = 2 and n = 4 and Z looks like the
following:

Z =




1 0
1 0
1 0
0 1




Then the 1st-3rd rows of y are associated with the first row of x, and the 4th row
of y is associated with the last row of x. Then if a is specified as "scaling", a
has the following structure: 



0
a1
a2
0




4.2 Q, R, Λ model structures

The possible Q, R, and Λ model structures are identical, except that R is n×n while
Q and Λ are m × m. All types of structures can be specified using a list matrix, but
there are also text shortcuts for specifying common structures. The structures are
shown using Q as the example.
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Q=matrix(list(),m,m): This is the most general way to specify the parameters
and allows there to be fixed and estimated elements. Each character string in
the list matrix is the name of one of the Q elements to be estimated, and each
numerical value is a fixed value. For example if
Q=matrix(list("s2a",0,0,0,"s2a",0,0,0,"s2b"),3,3),
then Q has the following structure:




σ2
a 0 0

0 σ2
a 0

0 0 σ2
b




Note that diag(c("s2a","s2a","s2b")) will not have the desired effect of
producing a matrix with numeric 0s on the off-diagonals. It will have character
0s and MARSS will interpret “0” as the name of an element of Q to be estimated.
Instead, the following two lines can be used:
Q=matrix(list(0),3,3)
diag(Q)=c("s2a","s2a","s2b")

Q="diagonal and equal": There is only one process variance value in this
case: 


σ2 0 0
0 σ2 0
0 0 σ2




Q="diagonal and unequal": There are m process variance values in this case:



σ2
1 0 0

0 σ2
2 0

0 0 σ2
3




Q="unconstrained": There are values on the diagonal and the off-diagonals of
Q and the variances and covariances are all different:




σ2
1 σ1,2 σ1,3

σ1,2 σ2
2 σ2,3

σ1,3 σ2,3 σ2
3




There are m process variances and (m2 −m)/2 covariances in this case, so (m2 +
m)/2 values to be estimated. Note that variance-covariance matrices are never
truly unconstrained since the upper and lower triangles of the matrix must be
equal.

Q="equalvarcov": There is one process variance and one covariance:



σ2 β β
β σ2 β
β β σ2
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Q=matrix(c(), m, m), where all values in c() are character strings: Each el-
ement in Q is estimated and each character string is the name of a value to be
estimated. Note if m = 1, you still need to wrap its value in matrix() so that its
class is matrix.

Q=matrix(c(), m, m), where all values in c() are numeric values: Each ele-
ment in Q is fixed to the values in the matrix.

Q="identity": The Q matrix is the identity matrix:



1 0 0
0 1 0
0 0 1




Q="zero": The Q matrix is all zeros:



0 0 0
0 0 0
0 0 0




Be careful when setting Λ model structures. Mis-specifying the structure of Λ
can have catastrophic, but difficult to discern, effects on your estimates. See the com-
ments on priors in Chapter 1.

4.3 B model structures

Like the variance-covariance matrices (Q, R and Λ), B can be specified with a
list matrix to allow you to have both fixed and shared elements in the B matrix.
Character matrices and matrices with fixed values operate the same way as for the
variance-covariance matrices. In addition, the same text shortcuts are available: “un-
constrained", “identity", “diagonal and equal", “diagonal and unequal", “equalvar-
cov", and “zero". A fixed B can be specified with a numeric matrix, but all eigen-
values must fall within the unit circle; meaning all(abs(eigen(B)$values)<=1)
must be true.

4.4 Z model

Like B and the variance-covariance matrices, Z can be specified with a list matrix to
allow you to have both fixed and estimated elements in Z. If Z is a square matrix,
many of the same text shortcuts are available: “diagonal and equal", “diagonal and
equal", and “equalvarcov". If Z is a design matrix1, then a special shortcut is avail-
able using factor() which allows you to specify which y rows are associated with
which x rows. See Chapter 5 and the applications chapters for more examples.

1 a matrix with only 0s and 1s and where the row sums are all equal to 1
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Z=factor(c(1,1,1)): All y time series are observing the same (and only) hid-
den state trajectory x (n = 3 and m = 1):

Z =




1
1
1




Z=factor(c(1,2,3)): Each time series in y corresponds to a different hidden
state trajectory. This is the default Z model and in this case n = m:

Z =




1 0 0
0 1 0
0 0 1




Z=factor(c(1,1,2)): The first two time series in y corresponds to one hidden
state trajectory and the third y time series corresponds to a different hidden state
trajectory. Here n = 3 and m = 2:

Z =




1 0
1 0
0 1




The Z model can be specified using either numeric or character factor levels.
c(1,1,2) is the same as c("north","north","south")

Z="identity": This is the default behavior. This means Z is a n × n identity
matrix and m = n. If n = 3, it is the same as Z=factor(c(1,2,3)).

Z=matrix(c(), n, m), where the elements in c() are all strings: Passing in a
n×m character matrix, means that each character string is a value to be estimated.
Be careful that you are specifying an identifiable model when using this option.

Z=matrix(c(), n, m), where the elements in c() are all numeric: Passing in
a n × m numeric matrix means that Z is fixed to the values in the matrix. The
matrix must be numeric but it does not need to be a design matrix.

Z=matrix(list(), n, m): Passing in a n×m list matrix allows you to combine
fixed and estimated values in the Z matrix. Be careful that you are specifying an
identifiable model.

4.5 Default model structures

The defaults for the model arguments in form="marxss" are

Z="identity" each y in y corresponds to one x in x
B="identity" no interactions among the x’s in x
U="unequal" the u’s in u are all different
Q="diagonal and unequal" process errors are independent but have different
variances
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R="diagonal and equal" the observations are i.i.d.
A="scaling" a is a set of scaling factors
C="zero" and D="zero" no inputs.
c="zero" and d="zero" no inputs.
x0="unequal" all initial states are different
V0="zero" the initial condition on the states (x0 or x1) is fixed but unknown
tinitx=0 the initial state refers to t = 0 instead of t = 1.
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Short Examples

In this chapter, we work through a series of short examples to illustrate the
{MARSS} package functions. This chapter is oriented towards those who are already
somewhat familiar with multivariate (or vector) autoregressive state-space (MARSS
or VARSS) models and want to get started quickly. We provide little explanatory
text. Those unfamiliar with MARSS (or VARSS) models might prefer to start with
the application chapters.

In these examples, we will use the default form="marxss" argument for a
MARSS() call. This specifies a MARSS model of the form:

xt = Btxt−1 +ut +Ctct +Gtwt , where wt ∼ MVN(0,Qt) (5.1a)
yt = Ztxt +at +Dtdt +Htvt , where vt ∼ MVN(0,Rt) (5.1b)

x1 ∼ MVN(π,Λ) or x0 ∼ MVN(π,Λ) (5.1c)

The c and d are inputs (not estimated). In the examples here, we leave off c and d.
We address including inputs only briefly at the end of the chapter. See Chapter 13
for extended examples of including covariates as inputs in a MARSS model. We will
also not use Gt or Ht in this chapter.

5.0.1 Output from model fits

{MARSS} provides the following functions for output from fitted model objects.
These functions output data frames in long form. There are companion functions
which return the same information as lists in matrix form.

• fitted(fit) Model and state fitted values (predictions). This is the right-side
of the y and x equations without the error terms. Will return confidence and
prediction intervals.

Type RShowDoc("Quick_Examples.R",package="MARSS") at the R command line to
open a file with all the code for the examples in this chapter.



34 5 Examples

• tidy(fit) Parameter estimates and confidence intervals.
• logLik(fit), AIC(fit) Log-likelihood and AIC.
• residuals(fit) Innovations, smoothations, and contemporaneous model and

state residuals.
• predict(fit), forecast(fit) Predictions and forecasts. Use ?predict.marssMLE

for information. ggplot2::autoplot(fr), where fr <- forecast(fit), plots
the forecasts.

• plot(fit), ggplot2::autoplot(fit) A series of informative and diagnostic
plots. Individual plots can be selected.

• stats::tsSmooth(fit, type=...), with ... equal to "xtT", "xtt" or "xtt1.
Kalman filter and smoother output. Expected value of X (states) conditioned on
all data, data 1 to t or data 1 to t −1. MARSSkf(fit) returns the same in a list of
matrices.

• stats::tsSmooth(fit, type=...), with ... equal to "ytT", "ytt" or "ytt1.
These are the expected values of the y (left side of the y equation with the er-
ror terms). MARSShatyt(fit) returns the same in matrix form. Analogous to
MARSSkf(fit) but for the y equation. Most users will likely want fitted()
which is the model fitted values (expected value of the right side of the y equa-
tion without the error term).

5.1 Fixed and estimated elements in parameter matrices

Suppose one has a MARSS model (Equation 5.1) with the following structure:
[

x1,t
x2,t

]
=

[
b1 0.1
b2 2

][
x1,t−1
x2,t−1

]
+

[
u
u

]
+

[
w1,t
w2,t

]
, wt ∼ MVN

([
0
0

]
,

[
q1 q3
q3 q2

])




y1,t
y2,t
y3,t


=




z1 0
z2 z2
0 3



[

x1,t
x2,t

]
+




0
0
0


+




v1,t
v2,t
v3,t


 , vt ∼ MVN






0
0
0


 ,




r 0 0
0 r 0
0 0 1






x0 ∼ MVN
([

π1
π2

]
,

[
1 0
0 1

])

Notice how this model mixes fixed values, estimated values and shared values.
In MARSS, model structure is specified using a list with the names, Z, A, R, B, U,

Q, x0 and V0. Each element is matrix (class matrix) with the same dimensions as the
matrix of the same name in the MARSS model. {MARSS} distinguishes between the
estimated and fixed values in a matrix by using a list matrix in which you can have
numeric and character elements. Numeric elements are fixed; character elements are
names of things to be estimated. The model above would be specified as:

Z <- matrix(list("z1", "z2", 0, 0, "z2", 3), 3, 2)
A <- matrix(0, 3, 1)
R <- matrix(list(0), 3, 3)
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diag(R) <- c("r", "r", 1)
B <- matrix(list("b1", 0.1, "b2", 2), 2, 2)
U <- matrix(c("u", "u"), 2, 1)
Q <- matrix(c("q1", "q3", "q3", "q2"), 2, 2)
x0 <- matrix(c("pi1", "pi2"), 2, 1)
V0 <- diag(1, 2)
model.gen <- list(Z = Z, A = A, R = R, B = B, U = U,

Q = Q, x0 = x0, V0 = V0, tinitx = 0)

Notice that there is a one-to-one correspondence between the model list in R and the
model on paper. Fitting the model is then just a matter of passing the data and model
list to the MARSS function:

kem <- MARSS(dat, model = model.gen)

If you work often with MARSS models then you will probably know whether
prior sensitivity is a problem for your types of MARSS applications. If so, note that
the {MARSS} package is unusual in that it allows you to set Λ = 0 and treat π
(initial x) as an unknown estimated parameter. This eliminates the prior and thus the
prior sensitivity problems—at the cost of adding m parameters. Depending on your
application, you may need to set the initial conditions at t = 1 instead of the default
of t = 0. If you are unsure, look in the index and read all the sections that talk about
troubleshooting priors.

5.2 Different numbers of state processes

Here we show a series of short examples using a dataset on Washington harbor seals
(?harborSealWA), which has five observation time series. The dataset is a little un-
usual in that it has four missing years from years 2 to 5. This causes some interesting
issues with prior specification. Before starting the harbor seal examples, we set up
the data, making time go across the columns and removing the year column:

dat <- t(harborSealWA)
dat <- dat[2:nrow(dat), ] # remove the year row

5.2.1 One hidden state process for each observation time series

This is the default model for the MARSS() function. In this case, n = m, the ob-
servation errors are i.i.d. and the process errors are independent and have different
variances. The elements in u are all different (meaning, they are not forced to be the
same). Mathematically, the MARSS model being fit is:
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x1,t
x2,t
x3,t
x4,t
x5,t




=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1




+




u1
u2
u3
u4
u5




+




w1,t
w2,t
w3,t
w4,t
w5,t




, wt ∼ MVN







0
0
0
0
0




,




q1 0 0 0 0
0 q2 0 0 0
0 0 q3 0 0
0 0 0 q4 0
0 0 0 0 q5










y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







x1,t
x2,t
x3,t
x4,t
x5,t




+




0
0
0
0
0




+




v1,t
v2,t
v3,t
v4,t
v5,t




, vt ∼ MVN







0
0
0
0
0




,




r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r







This is the default model, so you can fit it by simply passing dat to MARSS().

kem <- MARSS(dat)

Success! abstol and log-log tests passed at 38 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 38 iterations.
Log-likelihood: 19.13428
AIC: -6.268557 AICc: 3.805517

Estimate
R.diag 0.00895
U.X.SJF 0.06839
U.X.SJI 0.07163
U.X.EBays 0.04179
U.X.PSnd 0.05226
U.X.HC -0.00279
Q.(X.SJF,X.SJF) 0.03205
Q.(X.SJI,X.SJI) 0.01098
Q.(X.EBays,X.EBays) 0.00706
Q.(X.PSnd,X.PSnd) 0.00414
Q.(X.HC,X.HC) 0.05450
x0.X.SJF 5.98647
x0.X.SJI 6.72487
x0.X.EBays 6.66212
x0.X.PSnd 5.83969
x0.X.HC 6.60482
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Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

The output warns you that the convergence tolerance is high. You can set it lower by
passing in control=list(conv.test.slope.tol=0.1). MARSS() is automatically
creating parameter names since you did not tell it the names. To see exactly where
each parameter element appears in its parameter matrix, type summary(kem$model).

Though it is not necessary to specify the model for this example since it is the
default, here is how you could do so using matrices:

B <- Z <- diag(1, 5)
U <- matrix(c("u1", "u2", "u3", "u4", "u5"), 5, 1)
x0 <- A <- matrix(0, 5, 1)
R <- Q <- matrix(list(0), 5, 5)
diag(R) <- "r"
diag(Q) <- c("q1", "q2", "q3", "q4", "q5")

Notice that when a matrix has both fixed and estimated elements (like R and Q), a
list matrix is used to allow you to specify the fixed elements as numeric and to give
the estimated elements character names.

The default MLE method is the EM algorithm (method="kem"). You can also
use a quasi-Newton method (BFGS) by setting method="BFGS".

bfgs <- MARSS(dat, method = "BFGS")

Success! Converged in 34 iterations.
Function MARSSkfas used for likelihood calculation.

MARSS fit is
Estimation method: BFGS
Estimation converged in 34 iterations.
Log-likelihood: 19.13936
AIC: -6.278712 AICc: 3.795362

Estimate
R.diag 0.00849
U.X.SJF 0.06838
U.X.SJI 0.07152
U.X.EBays 0.04188
U.X.PSnd 0.05233
U.X.HC -0.00271
Q.(X.SJF,X.SJF) 0.03368
Q.(X.SJI,X.SJI) 0.01124
Q.(X.EBays,X.EBays) 0.00722
Q.(X.PSnd,X.PSnd) 0.00437



38 5 Examples

Q.(X.HC,X.HC) 0.05600
x0.X.SJF 5.98437
x0.X.SJI 6.72169
x0.X.EBays 6.65689
x0.X.PSnd 5.83527
x0.X.HC 6.60425
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

Using the default EM convergence criteria, the EM algorithm stops at a log-
likelihood a little lower than the BFGS algorithm does, but the EM algorithm
was faster, 6.4 times faster, in this case. If you wanted to use the EM fit as
the initial conditions, pass in the inits argument using the $par element (or
coef(fit,form="marss")) of the EM fit.

bfgs2 <- MARSS(dat, method = "BFGS", inits = kem$par)

The BFGS algorithm now converges in 20 iterations. Output not shown.
We mentioned that the missing years from year 2 to 4 creates an interesting issue

with the prior specification. The default behavior of MARSS is to treat the initial
state as at t = 0 instead of t = 1. Usually this doesn’t make a difference, but for this
dataset, if we set the prior at t = 1, the MLE estimate of R becomes 0. If we estimate
x1 as a parameter and let R go to 0, the likelihood will go to infinity (slowly but
surely). This is neither an error nor a pathology, but is probably not what you would
like to have happen. Note that the BFGS algorithm will not find the maximum in this
case; it will stop before R gets small and the likelihood gets very large. However, the
EM algorithm will climb up the peak. You can try it by running the following code.
It will report warnings which you can read about in Appendix A.

kem.strange <- MARSS(dat, model = list(tinitx = 1))

5.2.2 Five correlated hidden state processes

This is the same model except that the five hidden states have correlated process
errors. Mathematically, this is the model:
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x1,t
x2,t
x3,t
x4,t
x5,t




=




x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1




+




u1
u2
u3
u4
u5




+




w1,t
w2,t
w3,t
w4,t
w5,t




, wt ∼ MVN




0,




q1 c1,2 c1,3 c1,4 c1,5
c1,2 q2 c2,3 c2,4 c2,5
c1,3 c2,3 q3 c3,4 c3,5
c1,4 c2,4 c3,4 q4 c4,5
c1,5 c2,5 c3,5 c4,5 q5










y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







x1,t
x2,t
x3,t
x4,t
x5,t




+




0
0
0
0
0




+




v1,t
v2,t
v3,t
v4,t
v5,t




, vt ∼ MVN




0,




r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r







B is not shown in the top equation; it is a m×m identity matrix. To fit, use MARSS()
with the model argument set (output not shown).

kem <- MARSS(dat, model = list(Q = "unconstrained"))

This shows one of the text shortcuts, "unconstrained", which means estimate all
elements in the matrix. This shortcut can be used for all parameter matrices.

5.2.3 Five equally correlated hidden state processes

This is the same model except that now there is only one process error variance and
one process error covariance. Mathematically, the model is:




x1,t
x2,t
x3,t
x4,t
x5,t




=




x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1




+




u1
u2
u3
u4
u5




+




w1,t
w2,t
w3,t
w4,t
w5,t




, wt ∼ MVN




0,




q c c c c
c q c c c
c c q c c
c c c q c
c c c c q










y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







x1,t
x2,t
x3,t
x4,t
x5,t




+




0
0
0
0
0




+




v1,t
v2,t
v3,t
v4,t
v5,t




, vt ∼ MVN




0,




r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r







Again B is not shown in the top equation; it is a m×m identity matrix. To fit, use the
following code (output not shown):

kem <- MARSS(dat, model = list(Q = "equalvarcov"))

The shortcut ‘"equalvarcov" means one value on the diagonal and one on the off-
diagonal. It can be used for all square matrices (B, Q, R, and Λ).
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5.2.4 Five hidden state processes with a “north” and a “south” u and Q
elements

Here we fit a model with five independent hidden states where each observation time
series is an independent observation of a different hidden trajectory but the hidden
trajectories 1-3 share their u and Q elements, while hidden trajectories 4-5 share
theirs. This is the model:




x1,t
x2,t
x3,t
x4,t
x5,t




=




x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1




+




un
un
un
us
us




+




w1,t
w2,t
w3,t
w4,t
w5,t




, wt ∼ MVN




0,




qn 0 0 0 0
0 qn 0 0 0
0 0 qn 0 0
0 0 0 qs 0
0 0 0 0 qs










y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







x1,t
x2,t
x3,t
x4,t
x5,t




+




0
0
0
0
0




+




v1,t
v2,t
v3,t
v4,t
v5,t




, vt ∼ MVN




0,




r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r







To fit we use the following code:

regions <- list("N", "N", "N", "S", "S")
U <- matrix(regions, 5, 1)
Q <- matrix(list(0), 5, 5)
diag(Q) <- regions
kem <- MARSS(dat, model = list(U = U, Q = Q))

Only u and Q need to be specified since the other parameters are at their default
values.

5.2.5 Fixed observation error variance

Here we fit the same model but with a known observation error variance. This is the
model:
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x1,t
x2,t
x3,t
x4,t
x5,t




=




x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1




+




un
un
un
us
us




+




w1,t
w2,t
w3,t
w4,t
w5,t




, wt ∼ MVN




0,




qn 0 0 0 0
0 qn 0 0 0
0 0 qn 0 0
0 0 0 qs 0
0 0 0 0 qs










y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







x1,t
x2,t
x3,t
x4,t
x5,t




+




0
0
0
0
0




+




v1,t
v2,t
v3,t
v4,t
v5,t




,

vt ∼ MVN




0,




0.01 0 0 0 0
0 0.01 0 0 0
0 0 0.01 0 0
0 0 0 0.01 0
0 0 0 0 0.01







To fit this model, use the following code (output not shown):

regions <- list("N", "N", "N", "S", "S")
U <- matrix(regions, 5, 1)
Q <- matrix(list(0), 5, 5)
diag(Q) <- regions
R <- diag(0.01, 5)
kem <- MARSS(dat, model = list(U = U, Q = Q, R = R))

5.2.6 One hidden state and five i.i.d. observation time series

Instead of five hidden state trajectories, we specify that there is only one and all the
observations are observing that one trajectory. Mathematically, the model is:

xt = xt−1 +u+wt , wt ∼ N(0,q)




y1,t
y2,t
y3,t
y4,t
y5,t




=




1
1
1
1
1




xt +




0
a2
a3
a4
a5




+




v1,t
v2,t
v3,t
v4,t
v5,t




, vt ∼ MVN




0,




r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r







Note the default model for R is "diagonal and equal"’ so we can leave this off
when specifying the model argument. To fit, use this code (output not shown):
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Z <- factor(c(1, 1, 1, 1, 1))
kem <- MARSS(dat, model = list(Z = Z))

Success! abstol and log-log tests passed at 28 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 28 iterations.
Log-likelihood: 3.593276
AIC: 8.813447 AICc: 11.13603

Estimate
A.SJI 0.80153
A.EBays 0.28245
A.PSnd -0.54802
A.HC -0.62665
R.diag 0.04523
U.U 0.04759
Q.Q 0.00429
x0.x0 6.39199
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

You can also pass in Z exactly as it is in the equation: Z=matrix(1,5,2), but the fac-
tor shorthand is handy if you need to assign different observed time series to different
underlying state time series (see next examples). The default a form is "scaling",
which means that the first y row associated with a given x has a = 0 and the rest are
estimated.

5.2.7 One hidden state and five independent observation time series with
different variances

Mathematically, this model is:
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xt = xt−1 +u+wt , wt ∼ N(0,q)




y1,t
y2,t
y3,t
y4,t
y5,t




=




1
1
1
1
1




xt +




0
a2
a3
a4
a5




+




v1,t
v2,t
v3,t
v4,t
v5,t




, vt ∼ MVN




0,




r1 0 0 0 0
0 r2 0 0 0
0 0 r3 0 0
0 0 0 r4 0
0 0 0 0 r5







To fit this model:

Z <- factor(c(1, 1, 1, 1, 1))
R <- "diagonal and unequal"
kem <- MARSS(dat, model = list(Z = Z, R = R))

Success! abstol and log-log tests passed at 24 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 24 iterations.
Log-likelihood: 16.66199
AIC: -9.323982 AICc: -3.944671

Estimate
A.SJI 0.79555
A.EBays 0.27540
A.PSnd -0.53694
A.HC -0.60874
R.(SJF,SJF) 0.03229
R.(SJI,SJI) 0.03528
R.(EBays,EBays) 0.01352
R.(PSnd,PSnd) 0.01082
R.(HC,HC) 0.19609
U.U 0.05270
Q.Q 0.00604
x0.x0 6.26676
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.
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5.2.8 Two hidden state processes

Here we fit a model with two hidden states (north and south) where observation
time series 1-3 are for the north and 4-5 are for the south. We make the hidden state
processes independent (meaning a diagonal Q matrix) but with the same process
variance. We make the observation errors i.i.d. (the default) and the u elements equal.
Mathematically, this is the model:

[
xn,t
xs,t

]
=

[
xn,t−1
xs,t−1

]
+

[
u
u

]
+

[
wn,t
ws,t

]
, wt ∼ MVN

(
0,

[
q 0
0 q

])




y1,t
y2,t
y3,t
y4,t
y5,t




=




1 0
1 0
1 0
0 1
0 1




[
xn,t
xs,t

]
+




0
a2
a3
0
a5




+




v1,t
v2,t
v3,t
v4,t
v5,t




, vt ∼ MVN




0,




r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r







To fit the model, use the following code (output not shown):

Z <- factor(c("N", "N", "N", "S", "S"))
Q <- "diagonal and equal"
U <- "equal"
kem <- MARSS(dat, model = list(Z = Z, Q = Q, U = U))

You can also pass in Z exactly as it is in the equation as a numeric matrix; the factor
notation is simply a shortcut for making this design matrix (as Z is in these exam-
ples). "equal" is a shortcut meaning all elements in a matrix are constrained to be
equal. It can be used for all column matrices (a, u and π). "diagonal and equal"
can be used as a shortcut for all square matrices (B, Q, R, and Λ).

5.3 Linear constraints

Your model can have simple linear constraints within all the parameters except Q,
R and Λ. For example 1 + 2a − 3b is a linear constraint. When entering this value
for your matrix, you specify this as "1+2*a+-3*b". NOTE: +’s join parts so use
"+-3*b" to specify −3b. Anything after * is a parameter. So 1*1 has a parameter
called "1". Example, let’s specify the following B, Q and Z matrices:

U =

[
u−0.1
u+0.1

]
Q =

[
q11 0
0.01 0

]
Z =




z1 − z2 2z1
0 z1
z2 0
0 z3
0 1+ z3




This would be specified as (notice "1*z1+-1*z2" for z1 − z2):
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U <- matrix(list("-0.1+1*u","0.1+1*u"),2,1)
Q <- matrix(list("q11",0,0,0.01),2,2)
Z <- matrix(list("1*z1+-1*z2",0,"z2",0,0,"2*z1","z1",0,"z3","1+z3"),5,2)

We need to fix A if Z is estimated.

kem <- MARSS(dat, model = list(Z = Z, Q = Q, U = U, A="zero"))

5.4 Time-varying parameters

Time-varying parameters are specified by passing in an array of matrices (list, nu-
meric or character) where the 3rd dimension of the array is time and must be the
same value as the 2nd (time) dimension of the data matrix. No text shortcuts are
allowed for time-varying parameters; you need to use the matrix form.

For example, let’s say we wanted a different u for the first half versus second half
of the harbor seal time series. We would pass in an array for u as follows:

U1 <- matrix("t1", 5, 1)
U2 <- matrix("t2", 5, 1)
Ut <- array(U2, dim = c(dim(U1), dim(dat)[2]))
TT <- dim(dat)[2]
Ut[, , 1:floor(TT / 2)] <- U1
Qde <- "diagonal and equal"
kem.tv <- MARSS(dat, model = list(U = Ut, Q = Qde))

You can have some elements in a parameter matrix be time-constant and some be
time-varying:

U1 <- matrix(c(rep("t1", 4), "hc"), 5, 1)
U2 <- matrix(c(rep("t2", 4), "hc"), 5, 1)
Ut <- array(U2, dim = c(dim(U1), dim(dat)[2]))
Ut[, , 1:floor(TT / 2)] <- U1
kem.tv <- MARSS(dat, model = list(U = Ut, Q = Qde))

Note that how the time-varying model is specified for MARSS is the same as you
would write the time-varying model on paper in matrix math form.

5.5 Including inputs (or covariates)

In MARSS models with covariates, the covariates are often treated as inputs and
appear as either the c or d in Equation 5.1, depending on the application. However,
more generally, c and d are simply inputs that are fully-known (no missing values).
ct is the p×1 vector of inputs at time t which affect the states and dt is a q×1 vector
of inputs (potentially the same as ct ), which affect the observations.

Ct is an m × p matrix of coefficients relating the effects of ct to the m × 1 state
vector xt , and Dt is an n × q matrix of coefficients relating the effects of dt to the
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n × 1 observation vector yt . The elements of C and D can be estimated, and their
form is specified much like the other matrices.

With the MARSS() function, one can fit a model with inputs by simply passing in
model$c and/or model$d in the MARSS() call as a p×T or q×T matrix, respectively.
The form for Ct and Dt is similarly specified by passing in model$C and/or model$D.
If C and D are not time-varying, they are passed in as a 2-dimensional matrix. If they
are time-varying, they must be passed in as an 3-dimensional array with the 3rd
dimension equal to the number of time steps.

See Chapter 13 for extended examples of including covariates as inputs in a
MARSS model. Also note that it is not necessary to have your covariates appear
in c and/or d. That is a common form, however in some MARSS models, covariates
will appear in one of the parameter matrices as fixed values.

5.6 Printing and summarizing models and model fits

The package includes print functions for marssMODEL objects and marssMLE ob-
jects (fitted models).

print(kem)
print(kem$model)

This will print the basic information on model structure and model fit that you have
seen in the previous examples. The package also includes a summary function for
models.

summary(kem$model)

Output for the summary function is not shown because it is verbose. It prints each
matrix with the fixed elements denoted with their values and the free elements de-
noted by their names. This is very helpful for confirming exactly what model struc-
ture you are fitting to the data.

The print function will also print various other types of output such as a vector of
the estimated parameters, the estimated states, the state standard errors, etc. You use
the what argument in the print call to specify the desired output. Type ?print.MARSS
to see a list of the types of output that can be printed with a print call. If you want
to use the output from print instead of printing to the console, then assign the print
call to a value:

x <- print(kem, what = "states", silent = TRUE)

The package also includes the common functions for working with the out-
put from fitted models: residuals(fit), coef(fit) (the estimated parameters),
fitted(fit), logLik(fit) and predict(fit).

5.7 Tidy output

The tidy() and glance() functions will provide summaries as a data.frame for use
in further analyses and for passing to ggplot().
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tidy(kem)

term estimate std.error conf.low conf.up
1 R.diag 0.14015704 0.0247974347 0.091554965 0.188759123
2 U.1 0.04770272 0.0104435216 0.027233790 0.068171643
3 Q.diag 0.00000000 0.0005655539 -0.001108465 0.001108465
4 x0.N 6.92924815 0.1238199246 6.686565560 7.171930745
5 x0.S 5.95499350 0.1710235191 5.619793566 6.290193441

glance(kem)

coef.det sigma df logLik AIC AICc
1 0.6149352 0.1420352 5 -30.98719 71.97439 72.89747
convergence errors

1 0 0

5.8 Confidence intervals on a fitted model

The function MARSSparamCIs() is used to compute confidence intervals with a de-
fault α level of 0.05. The default is to compute approximate confidence intervals us-
ing the Hessian matrix (method="hessian"). Confidence intervals can also be com-
puted via parametric (method="parametric") or non-parametric (method="innovations")
bootstrapping. Note, if you want confidence intervals on variances, then it is unwise
to use the Hessian approximation as it is symmetric and variances are constrained to
be positive.

5.8.1 Approximate confidence intervals from the Hessian matrix

The default method for MARSSparamCIs() computes approximate confidence inter-
vals using an analytically computed Hessian matrix (Harvey, 1989, section 3.4.5).
The call is:

kem.with.hess.CIs <- MARSSparamCIs(kem)

See ?MARSShessian for a discussion of the Hessian calculations. Use print or just
type the marssMLE object name to see the confidence intervals:

print(kem.with.hess.CIs)

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 390 iterations.
Log-likelihood: -30.98719
AIC: 71.97439 AICc: 72.89747

ML.Est Std.Err low.CI up.CI
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R.diag 0.1402 0.024797 0.09155 0.18876
U.1 0.0477 0.010444 0.02723 0.06817
Q.diag 0.0000 0.000566 -0.00111 0.00111
x0.N 6.9292 0.123820 6.68657 7.17193
x0.S 5.9550 0.171024 5.61979 6.29019
Initial states (x0) defined at t=0

CIs calculated at alpha = 0.05 via method=hessian

5.8.2 Confidence intervals from a parametric bootstrap

Use method="parametric" to use a parametric bootstrap to compute confidence
intervals and bias using a parametric bootstrap. Note, nboot should be more like
1000, but it is set low here so the example runs quickly.

kem.w.boot.CIs <- MARSSparamCIs(kem, method = "parametric", nboot = 10)
print(kem.w.boot.CIs)

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 390 iterations.
Log-likelihood: -30.98719
AIC: 71.97439 AICc: 72.89747

ML.Est Std.Err low.CI up.CI Est.Bias Unbias.Est
R.diag 0.1402 0.03432 0.0952 0.1944 0.00452 0.145
U.1 0.0477 0.00499 0.0453 0.0602 -0.00375 0.044
Q.diag 0.0000 0.00000 0.0000 0.0000 0.00000 0.000
x0.N 6.9292 0.07054 6.7644 6.9582 0.07132 7.001
x0.S 5.9550 0.07363 5.7622 5.9828 0.10829 6.063
Initial states (x0) defined at t=0

CIs calculated at alpha = 0.05 via method=parametric
Bias calculated via bootstrapping with bootstraps.

5.9 Vectors of just the estimated parameters

Often it is useful to have a vector of the estimated parameters. For example, if you
are writing a call to optim(), you will need a vector of just the estimated parameters.
You can use the function coef():

parvec <- coef(kem, type = "vector")
parvec
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R.diag U.1 Q.diag x0.N x0.S
0.14015704 0.04770272 0.00000000 6.92924815 5.95499350

If you need the parameters as a matrix, use type = "matrix".

5.10 Kalman filter and smoother output

All the standard Kalman filter and smoother output (along with the lag-one covari-
ance smoother output) is available using the tsSmooth() and MARSSkf() functions.
Read the help file (?MARSSkf) for details and meanings of the names in the output
list. tsSmooth() returns a data frame in long form. You need to pass in the type of
conditioning you want (on all data, data 1 to t or data 1 to t −1).

df <- tsSmooth(kem)
head(df)

.rownames t .estimate .se
1 N 1 6.976951 0
2 N 2 7.024654 0
3 N 3 7.072356 0
4 N 4 7.120059 0
5 N 5 7.167762 0
6 N 6 7.215464 0

MARSSkf() returns a list with all the filter and smoother output (including variance
matrices) in matrix and array form.

kf <- MARSSkf(kem)
names(kf)

[1] "xtT" "VtT" "Vtt1T" "x0T"
[5] "V0T" "x01T" "V10T" "x00T"
[9] "V00T" "Vtt" "Vtt1" "J"
[13] "J0" "Kt" "xtt1" "xtt"
[17] "Innov" "Sigma" "kfas.model" "logLik"
[21] "ok" "errors"

# if you only need the logLik,
MARSSkf(kem, only.logLik = TRUE)

$logLik
[1] -30.98719

# or
logLik(kem)

'log Lik.' -30.98719 (df=5)



50 5 Examples

5.11 Degenerate variance estimates

If your data are short relative to the number of parameters you are estimating, then
you are liable to find that some of the variance elements are degenerate (equal to
zero). Try the following:

dat.short <- dat[1:4, 1:10]
kem.degen <- MARSS(dat.short, control = list(allow.degen = FALSE))

Warning! Abstol convergence only. Maxit (=500) reached before log-log convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
WARNING: Abstol convergence only no log-log convergence.
maxit (=500) reached before log-log convergence.
The likelihood and params might not be at the ML values.
Try setting control$maxit higher.
Log-likelihood: 11.67854
AIC: 2.642914 AICc: 63.30958

Estimate
R.diag 1.22e-02
U.X.SJF 9.79e-02
U.X.SJI 1.09e-01
U.X.EBays 9.28e-02
U.X.PSnd 1.11e-01
Q.(X.SJF,X.SJF) 1.89e-02
Q.(X.SJI,X.SJI) 1.03e-05
Q.(X.EBays,X.EBays) 8.24e-06
Q.(X.PSnd,X.PSnd) 3.05e-05
x0.X.SJF 5.96e+00
x0.X.SJI 6.73e+00
x0.X.EBays 6.60e+00
x0.X.PSnd 5.71e+00
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

Convergence warnings
Warning: the Q.(X.SJI,X.SJI) parameter value has not converged.
Warning: the Q.(X.EBays,X.EBays) parameter value has not converged.
Warning: the Q.(X.PSnd,X.PSnd) parameter value has not converged.
Type MARSSinfo("convergence") for more info on this warning.
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This will print a warning that the maximum number of iterations was reached before
convergence of some of the Q parameters. It might be that if you just ran a few more
iterations the variances will converge. So first try setting control$maxit higher.

kem.degen2 <- MARSS(dat.short, control = list(
maxit = 1000,
allow.degen = FALSE

), silent = 2)

Output not shown, but if you run the code, you will see that some of the Q terms are
still not converging. MARSS can detect if a variance is going to zero and it will try
zero to see if that has a higher likelihood. Try removing the allow.degen=FALSE
which was turning off this feature.

kem.short <- MARSS(dat.short)

Warning! Abstol convergence only. Maxit (=500) reached before log-log convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
WARNING: Abstol convergence only no log-log convergence.
maxit (=500) reached before log-log convergence.
The likelihood and params might not be at the ML values.
Try setting control$maxit higher.
Log-likelihood: 11.6907
AIC: 2.6186 AICc: 63.28527

Estimate
R.diag 1.22e-02
U.X.SJF 9.79e-02
U.X.SJI 1.09e-01
U.X.EBays 9.24e-02
U.X.PSnd 1.11e-01
Q.(X.SJF,X.SJF) 1.89e-02
Q.(X.SJI,X.SJI) 1.03e-05
Q.(X.EBays,X.EBays) 0.00e+00
Q.(X.PSnd,X.PSnd) 3.04e-05
x0.X.SJF 5.96e+00
x0.X.SJI 6.73e+00
x0.X.EBays 6.60e+00
x0.X.PSnd 5.71e+00
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.
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Convergence warnings
Warning: the Q.(X.SJI,X.SJI) parameter value has not converged.
Warning: the Q.(X.PSnd,X.PSnd) parameter value has not converged.
Type MARSSinfo("convergence") for more info on this warning.

So three of the four Q elements are going to zero. This often happens when you do
not have enough data to estimate both observation and process variance.

Perhaps we are trying to estimate too many variances. We can try using only one
variance value in Q and one u value in u:

kem.small <- MARSS(dat.short, model = list(
Q = "diagonal and equal",
U = "equal"

))

Success! abstol and log-log tests passed at 164 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 164 iterations.
Log-likelihood: 11.19
AIC: -8.379994 AICc: 0.9533396

Estimate
R.diag 0.0191
U.1 0.1027
Q.diag 0.0000
x0.X.SJF 6.0609
x0.X.SJI 6.7698
x0.X.EBays 6.5307
x0.X.PSnd 5.7451
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

No, there are simply not enough data to estimate both process and observation vari-
ances.

5.12 Bootstrap parameter estimates

You can easily produce bootstrap parameter estimates from a fitted model using
MARSSboot():
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boot.params <- MARSSboot(kem,
nboot = 20, output = "parameters", sim = "parametric"

)$boot.params

|2% |20% |40% |60% |80% |100%
Progress: ||||||||||||||||||||||||||||||||||||||||||||||||||

Use silent=TRUE to stop the progress bar from printing. The function will also
produce parameter sets generated using the Hessian matrix (sim="hessian") or a
non-parametric bootstrap (sim="innovations").

5.13 Data simulation

5.13.1 Simulated data from a fitted MARSS model

Data can be simulated from marssMLE object using MARSSsimulate().

sim.data <- MARSSsimulate(kem, nsim = 2, tSteps = 100)$sim.data

Then you might want to estimate parameters from the simulated data. Above we
created two simulated datasets (nsim=2). We will fit to the first one. Here the default
settings for MARSS() are used.

kem.sim.1 <- MARSS(sim.data[, , 1])

Then we might like to see the likelihood of the second set of simulated data under
the model fit to the first set of data. We do that with the Kalman filter function. This
function takes a marssMLE object (as output by say the MARSS() function), and we
have to replace the data in kem.sim.1 with the second set of simulated data.

kem.sim.2 <- kem.sim.1
kem.sim.2$model$data <- sim.data[, , 2]
MARSSkf(kem.sim.2)$logLik

[1] -244.1662

5.14 Bootstrap AIC

The function MARSSaic() computes a bootstrap AIC for model selection purposes.
output="AICbp" will produce a parameter bootstrap. Use output="AICbb" to pro-
duce a non-parametric bootstrap AIC. You will need a large number of bootstraps
(nboot). We use only 10 bootstraps to show you how to compute AICb with the
{MARSS} package, but the AICbp estimate will be terrible with this few bootstraps.
nboot should be more like 1000.
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kem.with.AICb <- MARSSaic(kem,
output = "AICbp",
Options = list(nboot = 10, silent = TRUE)

)
print(kem.with.AICb)

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 390 iterations.
Log-likelihood: -30.98719
AIC: 71.97439 AICc: 72.89747 AICbp(param): 69.60448

Estimate
R.diag 0.1402
U.1 0.0477
Q.diag 0.0000
x0.N 6.9292
x0.S 5.9550
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

5.15 Convergence

MARSS uses two convergence tests. The first is

logLiki+1 − logLiki < tol

This is called abstol (meaning absolute tolerance) in the output. The second is
called the conv.test.slope. This looks at the slope of the log parameter value (or
likelihood) versus log iteration number and asks whether that is close to zero (not
changing).

If you are having trouble getting the model to converge, then start by addressing
the following 1) Are you trying to fit a bad model, e.g., fitting a non-stationary model
to stationary data or fitting a model that specifies independence of errors or states to
data that clearly violate that assumption or fitting a model that implies a particular
stationary distribution to data that strongly violate that? 2) Do you have confounded
parameters, e.g., two parameters that have the same effect (e.g., effectively two in-
tercepts)?, 3) Are you trying to fit a model to 1 data point somewhere, e.g., in a big
multivariate dataset with lots of missing values? 4) How many parameters are you
trying to estimate per data point? 5) Check your residuals (look at the QQplots in
plot(fit)) for normality. 6) Did you do any data transformations that would cause
one of the variances to go to zero? Replacing 0s with a constant will do that. Try
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replacing them with NAs (missing). Do you have long strings of constant numbers
in your data? Binned data often look like that, and that will drive Q to 0.
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Setting and searching initial conditions

The EM algorithm is very robust to initial starting conditions however before final
results are accepted, they should be tested using other initial conditions. Other times
you will want to pass in specific initial conditions because the MARSS() function
cannot find initial conditions on its own, which is the case for certain models with
certain Z matrices in particular or you might want to start with initial conditions at
the MLEs of another fit. This chapter shows you how to set initial conditions.

The chapter will also cover using a Monte Carlo search over random initial val-
ues. This is a brute force method for finding optimal initial conditions. It simply uses
random initial conditions and runs the EM algorithm for a number of iterations and
selects the initial conditions with the highest log-likelihood after the given number
of iterations. In MARSS versions 3.9 and earlier, there was a utility function to per-
form a Monte Carlo search. However, it is very hard for the function to come up with
reasonable random initial conditions for the wide variety of models that MARSS
can fit. In MARSS version 3.10, the MARSSmcinit() function was removed and
replaced with this chapter discussing how to do your own Monte Carlo initial con-
ditions search. The original MARSSmcinit() function is included in the R code with
this chapter (see footnote).

6.1 Fitting a model with a new set of initial conditions

Fitting a model with a new set of initial conditions is straight-forward with the
MARSS() function. Simply pass in the argument inits. This is illustrated with an
example from Chapter 13.

We will fit a model with covariates to phytoplankton data:

fulldat <- lakeWAplanktonTrans
years <- fulldat[, "Year"] >= 1965 & fulldat[, "Year"] < 1975

Type RShowDoc("Chapter_inits.R",package="MARSS") at the R command line to
open a file with all the code for this chapter and see a copy of the old MARSSmcinit()
function.
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dat <- t(fulldat[years, c("Greens", "Bluegreens")])
the.mean <- apply(dat, 1, mean, na.rm = TRUE)
the.sigma <- sqrt(apply(dat, 1, var, na.rm = TRUE))
dat <- (dat - the.mean) * (1 / the.sigma)

The covariates for this example are temperature and total phosphorous.

covariates <- rbind(
Temp = fulldat[years, "Temp"],
TP = fulldat[years, "TP"]

)
# demean the covariates
the.mean <- apply(covariates, 1, mean, na.rm = TRUE)
covariates <- covariates - the.mean

We will fit a model where algal abundance is a random walk without drift and
where the observation errors are explained by the covariates plus independent unex-
plained noise:

U <- x0 <- "zero"
Q <- "unconstrained"
d <- covariates
A <- "zero"
D <- "unconstrained"
R <- "diagonal and equal"
model.list <- list(
U = U, Q = Q, A = A, R = R,
D = D, d = d, x0 = x0

)
kem <- MARSS(dat, model = model.list)

Success! abstol and log-log tests passed at 72 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 72 iterations.
Log-likelihood: -236.5911
AIC: 489.1822 AICc: 489.8582

Estimate
R.diag 0.0720
Q.(1,1) 0.9946
Q.(2,1) -0.0290
Q.(2,2) 0.0976
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D.(Greens,Temp) 0.3572
D.(Bluegreens,Temp) 0.2537
D.(Greens,TP) -0.0215
D.(Bluegreens,TP) 0.0354
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

The inits argument can be set either as a list that is the same as that from the
following:

coef(kem, what = "par")

or as a marssMLE object from previous MARSS() call for a model with the same
structure. ‘same structure’ means the model list used for the model argument is the
same and the dimensions of the model (number of states and rows of data) are the
same.

6.1.1 Specifying initial conditions as a list

The output from coef(kem, what="par") is a list with a column vector of the
estimated values for each parameter matrix. Here is the value for D and Q:

out <- coef(kem, what = "par")
out$D

[,1]
(Greens,Temp) 0.35722321
(Bluegreens,Temp) 0.25372912
(Greens,TP) -0.02151303
(Bluegreens,TP) 0.03544925

out$Q

[,1]
(1,1) 0.99456586
(2,1) -0.02895620
(2,2) 0.09757775

MARSS() gave names to the D and Q estimated values. It is important to look at the
output from coef(..., what="par") before passing in the inits list so that you
know where the parameter values fall in the parameter column vector. For example,
note that in the Q column vector, the variance for the first row in x (Greens) is first,
the (1,1) element, then the covariance, and last value is the variance of the second
row in x (Bluegreens) which appears in the (2,2) element of Q.

You can pass in inits for any of the parameters in coef(..., what="par").
You can pass in either a column vector that is the same size as that output by coef(),
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so for Q, the column vectors must be 3×1, or a scalar. If a scalar, then all values in
the par column vector will be set to that value—except for Q, R and Λ which will be
set to diagonal matrices with the scalar on the diagonal.

Examples

Pass in an initial value for Q that is a diagonal matrix with 1 on the diagonal.

inits <- list(Q = 1)
kem <- MARSS(dat, model = model.list, inits = inits)

Success! abstol and log-log tests passed at 134 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 134 iterations.
Log-likelihood: -236.6064
AIC: 489.2127 AICc: 489.8888

Estimate
R.diag 0.0686
Q.(1,1) 1.0079
Q.(2,1) -0.0296
Q.(2,2) 0.1004
D.(Greens,Temp) 0.3312
D.(Bluegreens,Temp) 0.2531
D.(Greens,TP) -0.0294
D.(Bluegreens,TP) 0.0345
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

# or
inits <- list(Q = matrix(c(1, 0, 1), 3, 1))
kem <- MARSS(dat, model = model.list, inits = inits)

Success! abstol and log-log tests passed at 134 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
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Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 134 iterations.
Log-likelihood: -236.6064
AIC: 489.2127 AICc: 489.8888

Estimate
R.diag 0.0686
Q.(1,1) 1.0079
Q.(2,1) -0.0296
Q.(2,2) 0.1004
D.(Greens,Temp) 0.3312
D.(Bluegreens,Temp) 0.2531
D.(Greens,TP) -0.0294
D.(Bluegreens,TP) 0.0345
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

Pass in an initial value for Q that is this non-diagonal matrix:
[

1 0.5
0.5 0.7

]

inits <- list(Q = matrix(c(1, 0.5, 0.7), 3, 1))
kem <- MARSS(dat, model = model.list, inits = inits)

Pass in an initial value for Q and D:

inits <- list(Q = matrix(c(1, 0.5, 0.7), 3, 1), D = 1)
kem <- MARSS(dat, model = model.list, inits = inits)

The initial values for D will be all 1s.
Pass in an initial value for D set to the value from a previous fit but use default

inits for everything else:

inits <- list(D = coef(kem, what = "par")$D)
kem <- MARSS(dat, model = model.list, inits = inits)

6.1.2 Specifying initial conditions using output from another fit

You can also use a MARSS() fit as an initial condition. The model must be the same
structure. This is typically used when you want to use an EM fit as a start for a BFGS
fit if you are using BFGS for the final MLE search.

You can pass in the initial conditions as a list using the coef() function.

# create the par list from the output
inits <- coef(kem, what = "par")
bfgs <- MARSS(dat, model = model.list, inits = inits, method = "BFGS")
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Or you can pass in a marssMLE object output from a prior call to MARSS(). This is a
shortcut for the above call.

# create the par list from the output
bfgs <- MARSS(dat, model = model.list, inits = kem, method = "BFGS")

6.2 Searching across initial values using a Monte Carlo routine

The EM algorithm is a hill-climbing algorithm and like all hill-climbing algorithms
it can get stuck on local maxima and ridges. There are a number approaches to doing
a pre-search of the initial conditions space, but a brute force random Monte Carlo
search appears to work well (Biernacki et al., 2003). It is slow, but normally suffi-
cient. In our papers on the distributional properties of MARSS parameter estimates,
we rarely found that an initial conditions search changed the estimates—except in
cases where Z and B are estimated as unconstrained or when the fraction of missing
data in the data set became large. Regardless an initial conditions search should be
done before reporting final estimates for an analysis1.

The idea behind a Monte Carlo search of initial conditions is simple. One simply
randomly generates initial conditions, runs the EM algorithm a few iterations (10-
20), and saves the log-likelihood at the end of those iterations. The starting initial
conditions is selected as the initial conditions that gives the lowest log-likelihood.

The R code included for this chapter includes a function that will do a simple
Monte Carlo search using a marssMLE object (output from a MARSS() call) and
drawing random initial conditions from a uniform distribution or a Wishart distribu-
tion for the variance-covariance matrices. The function will not work for all MARSS
models but will give you a starting point for setting up your own Monte Carlo search.
The function uses a control list to set numInits, the number of random initial value
draws, numInitSteps, the maximum number of EM iterations for each random ini-
tial value draw, and boundsInits, the bounds for the random distributions. It outputs
a list with specifying the initial values that give the lowest log-likelihood.

Here is a simple example of using the function. numInits is set low so that the
example runs quickly.

dat <- t(harborSeal)
dat <- dat[c(2, nrow(dat)), ]
fit1 <- MARSS(dat)

Success! abstol and log-log tests passed at 59 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001

1 It is also a good idea to try method="BFGS" to see if this changes the estimates.
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Estimation converged in 59 iterations.
Log-likelihood: 11.68334
AIC: -9.366688 AICc: -5.366688

Estimate
R.diag 0.00653
U.X.CoastalEstuaries 0.06083
U.X.Georgia.Strait 0.08278
Q.(X.CoastalEstuaries,X.CoastalEstuaries) 0.02048
Q.(X.Georgia.Strait,X.Georgia.Strait) 0.00889
x0.X.CoastalEstuaries 7.37351
x0.X.Georgia.Strait 8.40877
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

MCinits <- MARSSmcinit(fit1, control = list(numInits = 10))

> Starting Monte Carlo Initializations
|2% |20% |40% |60% |80% |100%

Progress: ||||||||||||||||||||||||||||||||||||||||||||||||||

fit2 <- MARSS(dat, inits = MCinits)

Success! abstol and log-log tests passed at 50 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 50 iterations.
Log-likelihood: 11.68355
AIC: -9.3671 AICc: -5.3671

Estimate
R.diag 0.00652
U.X.CoastalEstuaries 0.06082
U.X.Georgia.Strait 0.08278
Q.(X.CoastalEstuaries,X.CoastalEstuaries) 0.02050
Q.(X.Georgia.Strait,X.Georgia.Strait) 0.00889
x0.X.CoastalEstuaries 7.37350
x0.X.Georgia.Strait 8.40875
Initial states (x0) defined at t=0
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Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.



Part III

Applications
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In this part, we walk you through some longer analyses using MARSS models
for a variety of different applications. Most of these are analyses of ecological data,
but the same models are used in many other fields. These longer examples will take
you through both the conceptual steps (with pencil and paper) and a R step which
translates the conceptual model into code.

Set-up

• If you haven’t already, install the {MARSS} package from CRAN.
• Type in library(MARSS) at the R command line to load the package after you

install it.

Tips

• summary(fit$model), where fit = MARSS(...), will print detailed informa-
tion on the structure of the MARSS model. This allows you to double check the
model you are fitting.

• tidy(fit) will print the parameter estimates with approximate CIs (based on
the Hessian).

• ggplot2::autoplot(fit) will print a standard set of state-space plots and di-
agnostic plots.

• When you run MARSS(), it will output the number of iterations used. If you
reached the maximum, re-run with control=list(maxit=...) set higher than
the default.

• If you mis-specify the model, MARSS() will post an error that should give you
an idea of the problem (make sure silent=FALSE to see full error reports). Re-
member, the number of rows in your data is n, time is across the columns, and
the length of the vector of factors passed in for model$Z must be n while the
number of unique factors must be m, the number of x hidden state trajectories in
your model.

• The missing value indicator is NA.
• Running MARSS(data), with no arguments except your data, will fit a MARSS

model with m = n, a diagonal Q matrix with m variances, and i.i.d. observation
errors.

• Try MARSSinfo() at the command line if you get errors or warnings you don’t
understand. You might find insight there. Or look at the warnings and errors notes
in Appendix A.
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Count-based population viability analysis (PVA) using
corrupted data

7.1 Background

Estimates of extinction and quasi-extinction risk are an important risk metric
used in the management and conservation of endangered and threatened species. By
necessity, these estimates are based on data that contain both variability due to real
year-to-year changes in the population growth rate (process errors) and variability in
the relationship between the true population size and the actual count (observation
errors). Classic approaches to extinction risk assume the data have only process error,
i.e., no observation error. In reality, observation error is ubiquitous both because of
the sampling variability and also because of year-to-year (and day-to-day) variability
in sightability.

In this application, we will fit a univariate state-space model to population count
data with observation error. We will compute the extinction risk metrics given in
Dennis et al. (1991), however instead of using a process-error only model (as is done
in the original paper), we use a model with both process and observation error. The
risk metrics and their interpretations are the same as in Dennis et al. (1991). The
only real difference is how we compute σ2, the process error variance. However this
difference has a large effect on our risk estimates, as you will see.

We use here a density-independent model, a stochastic exponential growth model
in log space. This is equivalent to a MARSS model with B = 1. Density-independence
is often a reasonable assumption when doing a population viability analysis be-
cause we do such calculations for at-risk populations that are either declining or
that are well below historical levels (and presumably carrying capacity). In an ac-
tual population viability analysis, it is necessary to justify this assumption and if
there is reason to doubt the assumption, one tests for density-dependence (Taper and
Dennis, 1994) and does sensitivity analyses using state-space models with density-
dependence (Dennis et al., 2006).

Type RShowDoc("Chapter_PVA.R",package="MARSS") at the R command line to open
a file with all the code for the examples in this chapter.
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The univariate model is written:

xt = xt−1 +u+wt where wt ∼ N(0,σ2) (7.1)
yt = xt + vt where vt ∼ N(0,η2) (7.2)

where yt is the logarithm of the observed population size at time t, xt is the unob-
served state at time t, u is the growth rate, and σ2 and η2 are the process and ob-
servation error variances, respectively. In the R code to follow, σ2 is denoted Q and
η2 is denoted R because the functions we are using are also for multivariate state-
space models and those models use Q and R for the respective variance-covariance
matrices.

7.2 Simulated data with process and observation error

We will start by using simulated data to see the difference between data and estimates
from a model with process error only versus a model that also includes observation
error. For our simulated data, we used a decline of 5% per year, process variability
of 0.02 (typical for small to medium-sized vertebrates), and a observation variability
of 0.05 (which is a bit on the high end). We’ll randomly set 10% of the values as
missing. Here is the code:

First, set things up:

sim.u <- -0.05 # growth rate
sim.Q <- 0.02 # process error variance
sim.R <- 0.05 # non-process error variance
nYr <- 50 # number of years of data to generate
fracmissing <- 0.1 # fraction of years that are missing
init <- 7 # log of initial pop abundance
years <- seq(1:nYr) # sequence 1 to nYr
x <- rep(NA, nYr) # replicate NA nYr times
y <- rep(NA, nYr)

Then generate the population sizes using Equation 7.1:

x[1] <- init
for (t in 2:nYr) {
x[t] <- x[t - 1] + sim.u + rnorm(1, mean = 0, sd = sqrt(sim.Q))

}

Lastly, add observation error using Equation 7.2 and then add missing values:

for (t in 1:nYr) {
y[t] <- x[t] + rnorm(1, mean = 0, sd = sqrt(sim.R))

}
missYears <- sample(years[2:(nYr - 1)], floor(fracmissing * nYr),
replace = FALSE

)
y[missYears] <- NA
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Stochastic population trajectories show much variation, so it is best to look at a
few simulated data sets at once. In Figure 7.1, nine simulations from the identical
parameters are shown.
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Fig. 7.1. Plot of nine simulated population time series with process and observation error.
Circles are observation and the dashed line is the true population size.

Example 7.1 (The effect of parameter values on parameter estimates)

A good way to get a feel for reasonable σ2 values is to generate simulated data and
look at the time series. A biologist would have a pretty good idea of what kind of year-
to-year population changes are reasonable for their study species. For example for
many large mammalian species, the maximum population yearly increase would be
around 50% (the population could go from 1000 to 1500 in one year), but some fish
species could easily double or even triple in a really good year. Observed data may
bounce around for many different reasons having to do with sightability, sampling
error, age-structure, etc., but the underlying population trajectory is constrained by
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the kinds of year-to-year changes in population size that are biologically possible.
σ2 describes those true population changes.

You should run the example code several times using different parameter values to get
a feel for how different the time series can look based on identical parameter values.
You can cut and paste from the pdf into the R command line. Typical vertebrate σ2

values are 0.002 to 0.02, and typical η2 values are 0.005 to 0.1 (Holmes et al., 2007).
A u of -0.01 translates to an average 1% per year decline and a u of -0.1 translates
to a roughly 10% per year decline.

Example 7.1 code

par(mfrow = c(3, 3))
sim.u <- -0.05
sim.Q <- 0.02
sim.R <- 0.05
nYr <- 50
fracmiss <- 0.1
init <- 7
years <- seq(1:nYr)
for (i in 1:9) {
x <- rep(NA, nYr) # vector for ts w/o measurement error
y <- rep(NA, nYr) # vector for ts w/ measurement error
x[1] <- init
for (t in 2:nYr) {

x[t] <- x[t - 1] + sim.u + rnorm(1, mean = 0, sd = sqrt(sim.Q))
}
for (t in 1:nYr) {

y[t] <- x[t] + rnorm(1, mean = 0, sd = sqrt(sim.R))
}
missYears <-

sample(years[2:(nYr - 1)], floor(fracmiss * nYr), replace = FALSE)
y[missYears] <- NA
plot(years, y,

xlab = "", ylab = "Log abundance", lwd = 2, bty = "l"
)
lines(years, x, type = "l", lwd = 2, lty = 2)
title(paste("simulation ", i))

}
legend("topright", c("Observed", "True"),
lty = c(-1, 2), pch = c(1, -1)

)
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7.3 Maximum-likelihood parameter estimation

7.3.1 Model with process and observation error

Using the simulated data, we estimate the parameters, u, σ2, and η2, and the hidden
population sizes. These are the estimates using a model with process and observa-
tion variability. The function call is kem = MARSS(data), where data is a vector
of logged (base e) counts with missing values denoted by NA. After this call, the
maximum-likelihood parameter estimates are shown with coef(kem). There are nu-
merous other outputs from the MARSS() function. To get a list of the standard model
output available type in ?print.MARSS. Here’s code to fit to the simulated time se-
ries:

kem <- MARSS(y)

Let’s look at the parameter estimates for the nine simulated time series in Figure
7.1 to get a feel for the variation. The MARSS() function was used on each time series
to produce parameter estimate for each simulation. The estimates are followed by the
mean (over the nine simulations) and the true values:

kem.U kem.Q kem.R
sim 1 -0.050596683 0.023691410 0.05884478
sim 2 -0.066212484 0.026774089 0.07594102
sim 3 -0.032109874 0.005666535 0.06639715
sim 4 -0.032357613 0.031691031 0.03383079
sim 5 0.003797815 0.016831616 0.05564701
sim 6 -0.080896548 0.018123524 0.04064090
sim 7 -0.054411466 0.032179825 0.03642828
sim 8 -0.006942088 0.012109573 0.06001907
sim 9 -0.011947233 0.028853089 0.05684038
mean sim -0.036852908 0.021768966 0.05384326
true -0.050000000 0.020000000 0.05000000

As expected, the estimated parameters do not exactly match the true parameters,
but the average should be fairly close (although nine simulations is a small sample
size). Also note that although we do not get u quite right, our estimates are usually
negative. Thus our estimates usually indicate declining dynamics. Some of the kem.Q
estimates may be 0. This means that the maximum-likelihood estimate that the data
are generated by is a process with no environment variation and only observation
error.

The MARSS model fit also gives an estimate of the true population size with
observation error removed. This is in kem$states. Figure 7.2 shows the estimated
true states of the population over time as a solid line. Note that the solid line is
considerably closer to the actual true states (dashed line) than the observations. On
the other hand with certain datasets, the estimates can be quite wrong as well!
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Fig. 7.2. The circles are the observed population sizes with error. The dashed lines are the true
population sizes. The solid thin lines are the estimates of the true population size from the
MARSS model. When the process error variance is 0, these lines are straight.

7.3.2 Model with no observation error

We used the MARSS model to estimate the mean population rate u and process vari-
ability σ2 under the assumption that the count data have observation error. However,
the classic approach to this problem, referred to as the “Dennis model” (Dennis et al.,
1991), uses a model that assumes the data have no observation error (a MAR model);
all the variability in the data is assumed to result from process error. This approach
works well if the observation error in the data is low, but not so well if the observa-
tion error is high. We will next fit the data using the classic approach so that we can
compare and contrast parameter estimates from the different methods.

Using the estimation method in Dennis et al. (1991), our data need to be re-
specified as the observed population changes (delta.pop) between censuses along
with the time between censuses (tau). We re-specify the data as follows:

den.years <- years[!is.na(y)] # the non missing years
den.y <- y[!is.na(y)] # the non missing counts
den.n.y <- length(den.years)
delta.pop <- rep(NA, den.n.y - 1) # population transitions
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tau <- rep(NA, den.n.y - 1) # step sizes
for (i in 2:den.n.y) {
delta.pop[i - 1] <- den.y[i] - den.y[i - 1]
tau[i - 1] <- den.years[i] - den.years[i - 1]

} # end i loop

Next, we regress the changes in population size between censuses (delta.pop) on
the time between censuses (tau) while setting the regression intercept to 0. The slope
of the resulting regression line is an estimate of u, while the variance of the residuals
around the line is an estimate of σ2. The regression is shown in Figure 7.3. Here is
the code to do that regression:

den91 <- lm(delta.pop ~ -1 + tau)
# note: the "-1" specifies no intercept
den91.u <- den91$coefficients
den91.Q <- var(resid(den91))
# type summary(den91) to see other info about our regression fit
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Fig. 7.3. The regression of log(Nt+τ)− log(Nt) against τ. The slope is the estimate of u and
the variance of the residuals is the estimate of σ2. The regression is constrained to go through
(0,0).
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Here are the parameter values for the data in Figure 7.2 using the process-error
only model:

den91.U den91.Q
sim 1 -0.05722032 0.1435773
sim 2 -0.03748233 0.1883275
sim 3 -0.03312727 0.1389530
sim 4 -0.01376211 0.1075945
sim 5 -0.01075068 0.1449695
sim 6 -0.10531544 0.1007347
sim 7 -0.04380052 0.1141154
sim 8 -0.01974271 0.1614533
sim 9 -0.02940435 0.1488862
mean sim -0.03895619 0.1387346
true -0.05000000 0.0200000

Notice that the u estimates are similar to those from MARSS model, but the σ2

estimate (Q) is much larger. That is because this approach treats all the variance
as process variance, so any observation variance in the data is lumped into process
variance. The additional variance added is two times the observation variance.

Example 7.2 (The variability in parameter estimates)

In this example, we will look at how variable the parameter estimates are by gen-
erating multiple simulated data sets and then estimating parameter values for each.
This example compares the MARSS estimates to the estimates using a process error
only model, i.e., ignoring the observation error.

Run the example code a few times to compare the estimates using a state-space model
(kem) versus the model with no observation error (den91). Next, change the obser-
vation variance in the code, sim.R, in the data generation step in order to get a feel
for the estimation performance as observations are further corrupted. What happens
as observation error is increased? Next, decrease the number of years of data, nYr,
and re-run the parameter estimation. What is the effect of fewer years of data? If you
find that the example code takes too long to run, reduce the number of simulations
by reducing nsim in the code.
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Example 7.2 code

sim.u <- -0.05 # growth rate
sim.Q <- 0.02 # process error variance
sim.R <- 0.05 # non-process error variance
nYr <- 50 # number of years of data to generate
fracmiss <- 0.1 # fraction of years that are missing
init <- 7 # log of initial pop abundance (~1100 individuals)
nsim <- 9
years <- seq(1:nYr) # col of years
params <- matrix(NA,
nrow = (nsim + 2), ncol = 5,
dimnames = list(

c(paste("sim", 1:nsim), "mean sim", "true"),
c("kem.U", "den91.U", "kem.Q", "kem.R", "den91.Q")

)
)
x.ts <- matrix(NA, nrow = nsim, ncol = nYr) # ts w/o measurement error
y.ts <- matrix(NA, nrow = nsim, ncol = nYr) # ts w/ measurement error
for (i in 1:nsim) {
x.ts[i, 1] <- init
for (t in 2:nYr) {

x.ts[i, t] <- x.ts[i, t - 1] + sim.u + rnorm(1, mean = 0, sd = sqrt(sim.Q))
}
for (t in 1:nYr) {

y.ts[i, t] <- x.ts[i, t] + rnorm(1, mean = 0, sd = sqrt(sim.R))
}
missYears <- sample(years[2:(nYr - 1)], floor(fracmiss * nYr),

replace = FALSE
)
y.ts[i, missYears] <- NA

# MARSS estimates
kem <- MARSS(y.ts[i, ], silent = TRUE)
# type=vector outputs the estimates as a vector instead of a list
params[i, c(1, 3, 4)] <- coef(kem, type = "vector")[c(2, 3, 1)]

# Dennis et al 1991 estimates
den.years <- years[!is.na(y.ts[i, ])] # the non missing years
den.yts <- y.ts[i, !is.na(y.ts[i, ])] # the non missing counts
den.n.yts <- length(den.years)
delta.pop <- rep(NA, den.n.yts - 1) # transitions
tau <- rep(NA, den.n.yts - 1) # time step lengths
for (t in 2:den.n.yts) {

delta.pop[t - 1] <- den.yts[t] - den.yts[t - 1] # transitions
tau[t - 1] <- den.years[t] - den.years[t - 1] # time step length

} # end i loop
den91 <- lm(delta.pop ~ -1 + tau) # -1 specifies no intercept
params[i, c(2, 5)] <- c(den91$coefficients, var(resid(den91)))

}
params[nsim + 1, ] <- apply(params[1:nsim, ], 2, mean)
params[nsim + 2, ] <- c(sim.u, sim.u, sim.Q, sim.R, sim.Q)
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Here is an example of the output from the Example 7.2 code:

print(params, digits = 3)

kem.U den91.U kem.Q kem.R den91.Q
sim 1 -0.0200 -0.0206 0.03283 0.0325 0.0991
sim 2 -0.0618 -0.0530 0.00658 0.0882 0.1784
sim 3 -0.0585 -0.0552 0.01544 0.0650 0.1688
sim 4 -0.0772 -0.0754 0.00813 0.0778 0.1698
sim 5 -0.0610 -0.0627 0.01538 0.0368 0.1005
sim 6 -0.0652 -0.0750 0.00939 0.0597 0.1439
sim 7 -0.0636 -0.0659 0.02605 0.0256 0.0794
sim 8 -0.0492 -0.0742 0.01549 0.0752 0.1548
sim 9 -0.0509 -0.0294 0.00835 0.0592 0.1463
mean sim -0.0564 -0.0568 0.01529 0.0578 0.1379
true -0.0500 -0.0500 0.02000 0.0500 0.0200

7.4 Probability of hitting a threshold Π(xd, te)

A common extinction risk metric is ‘the probability that a population will hit a cer-
tain threshold xd within a certain time frame te – if the observed trends continue’. In
practice, the threshold used is not Ne = 1, which would be true extinction. Often a
‘functional’ extinction threshold will be used (Ne >> 1). Other times a threshold rep-
resenting some fraction of current levels is used. The latter is used because we often
have imprecise information about the relationship between the true population size
and what we measure in the field; that is, many population counts are index counts.
In these cases, one must use ‘fractional declines’ as the threshold. Also, extinction
estimates that use an absolute threshold (like 100 individuals) are quite sensitive to
error in the estimate of true population size. Here, we are going to use fractional
declines as the threshold, specifically pd = 0.1 which means a 90% decline.

The probability of hitting a threshold, denoted Π(xd , te), is typically presented
as a curve showing the probabilities of hitting the threshold (y-axis) over different
time horizons (te) on the x-axis. Extinction probabilities can be computed through
Monte Carlo simulations or analytically using Equation 16 in Dennis et al. (1991)
(note there is a typo in Equation 16; the last + is supposed to be a − ). We will use
the latter method:

Π(xd , te) = π(u)×Φ

(
−xd + |u|te√

σ2te

)
+ exp(2xd |u|/σ2)Φ

(
−xd −|u|te√

σ2te

)
(7.3)

where xe is the threshold and is defined as xe = log(N0/Ne). N0 is the current pop-
ulation estimate and Ne is the threshold. If we are using fractional declines then
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xe = log(N0/(pd × N0)) = − log(pd). π(u) is the probability that the threshold is
eventually hit (by te = ∞). π(u) = 1 if u <= 0 and π(u) = exp(−2uxd/σ2) if u > 0.
Φ() is the cumulative probability distribution of the standard normal (mean = 0, sd
= 1).

Here is the R code for that computation:

pd <- 0.1 # means a 90 percent decline
tyrs <- 1:100
xd <- -log(pd)
p.ever <- ifelse(u <= 0, 1, exp(-2 * u * xd / Q)) # Q=sigma2
for (i in 1:100) {
Pi[i] <- p.ever * pnorm((-xd + abs(u)*tyrs[i])/sqrt(Q*tyrs[i])) +

exp(2*xd*abs(u)/Q) * pnorm((-xd - abs(u)*tyrs[i])/sqrt(Q*tyrs[i]))
}

Figure 7.4 shows the estimated probabilities of hitting the 90% decline for the
nine 30-year times series simulated with u = −0.05, σ2 = 0.01 and η2 = 0.05. The
dashed line shows the estimates using the MARSS parameter estimates and the solid
line shows the estimates using a process-error only model (the den91 estimates). The
circles are the true probabilities. The difference between the estimates and the true
probabilities is due to errors in û. Those errors are due largely to process error—not
observation error. As we saw earlier, by chance population trajectories with a u < 0
will increase, even over a 50-year period. In this case, û will be positive when in fact
u < 0.

Looking at the figure, it is obvious that the probability estimates are highly vari-
able. However, look at the first panel. This is the average estimate (over nine simu-
lations). Note that on average (over nine simulations), the estimates are good. If we
had averaged over 1000 simulations instead of nine, the MARSS line would have
fallen on the true line. It is an unbiased predictor. While that may seem a small con-
solation if estimates for individual simulations are all over the map, it is important
for correctly specifying our uncertainty about our estimates. Second, rather than fo-
cusing on how the estimates and true lines match up, see if there are any types of
forecasts that seem better than others. For example, are 20-year predictions better
than 50-year and are 100-year forecasts better or worse. In Example 7.3, we will re-
make this figure with different u. This demonstrates how forecasts are more certain
for populations that are declining faster.

Example 7.3 (The effect of parameter values on risk estimates)

In this example, we will recreate Figure 7.4 using different parameter values. This
will illustrate how variability in the data and population process affect the risk esti-
mates. The Example 7.2 code needs to be run before the Example 7.3 code.

Begin by changing sim.R and rerunning the Example 7.2 code. Now run the Exam-
ple 7.3 code and generate parameter estimates. When are the estimates using the
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Fig. 7.4. Plot of the true and estimated probability of declining 90% in different time horizons
for nine simulated population time series with observation error. The plot may look like a
step-function if the σ2 estimate is very small (<1e-4 or so).

process-error only model (den91) worse and in what way are they worse? You might
imagine that you should always use a model that includes observation error, since
in practice observations are never perfect. However, there is a cost to estimating
that extra variance parameter and the cost is a more variable σ2 (Q) estimate. Play
with shortening the time series and decreasing the sim.R values. Are there situa-
tions when the ‘cost’ of the extra parameter is greater than the ‘cost’ of ignoring
observation error?

Next change the rate of decline in the simulated data. To do this, rerun the Example
7.2 code using a lower sim.u; then run the Example 7.3 code. Do the estimates
seem better or worse for rapidly declining populations? Rerun the Example 7.2 code
using fewer number of years (nYr smaller) and increase fracmiss. Run the Ex-
ample 7.3 code again. The graphs will start to look peculiar. Why do you think it is
doing that? Hint: look at the estimated parameters.
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Last change the extinction threshold (pd in the Example 7.3 code). How does chang-
ing the extinction threshold change the extinction probability curves? Do not remake
the data, i.e., don’t rerun the Example 7.2 code.
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Example 7.3 code

# Needs Example 2 to be run first
par(mfrow = c(3, 3))
pd <- 0.1; xd <- -log(pd) # decline threshold
te <- 100; tyrs <- 1:te # extinction time horizon
for (j in c(10, 1:8)) {
real.ex <- denn.ex <- kal.ex <- matrix(nrow = te)

# MARSS parameter estimates
u <- params[j, 1]; Q <- params[j, 3]
if (Q == 0) Q <- 1e-4 # just so the extinction calc doesn't choke
p.ever <- ifelse(u <= 0, 1, exp(-2 * u * xd / Q))
for (i in 1:100) {

if (is.finite(exp(2 * xd * abs(u) / Q))) {
sec.part <- exp(2 * xd * abs(u) / Q) *
pnorm((-xd - abs(u) * tyrs[i]) / sqrt(Q * tyrs[i]))

} else { sec.part <- 0 }
kal.ex[i] <- p.ever * pnorm((-xd + abs(u) * tyrs[i]) / sqrt(Q * tyrs[i])) +

} # end i loop

# Dennis et al 1991 parameter estimates
u <- params[j, 2]; Q <- params[j, 5]
p.ever <- ifelse(u <= 0, 1, exp(-2 * u * xd / Q))
for (i in 1:100) {

denn.ex[i] <- p.ever * pnorm((-xd + abs(u) * tyrs[i]) / sqrt(Q * tyrs[i]))
exp(2 * xd * abs(u) / Q) *
pnorm((-xd - abs(u) * tyrs[i]) / sqrt(Q * tyrs[i]))

} # end i loop

# True parameter values
u <- sim.u; Q <- sim.Q
p.ever <- ifelse(u <= 0, 1, exp(-2 * u * xd / Q))
for (i in 1:100) {

real.ex[i] <- p.ever * pnorm((-xd + abs(u) * tyrs[i]) / sqrt(Q * tyrs[i]))
exp(2 * xd * abs(u) / Q) *
pnorm((-xd - abs(u) * tyrs[i]) / sqrt(Q * tyrs[i]))

} # end i loop

plot(tyrs, real.ex, xlab = "Time steps into future",
ylab = "Probability of extinction", ylim = c(0, 1), bty = "l")

if (j <= 8) title(paste("simulation ", j))
if (j == 10) title("average over sims")
lines(tyrs, denn.ex, type = "l", col = "red", lwd = 2, lty = 1)
lines(tyrs, kal.ex, type = "l", col = "green", lwd = 2, lty = 2)

}
legend("bottomright", c("True", "Dennis", "KalmanEM"), pch = c(1, -1, -1),
col = c(1, 2, 3), lty = c(-1, 1, 2), lwd = c(-1, 2, 2), bty = "n")
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7.5 Certain and uncertain regions

Example 7.3 illustrates one of the problems with estimates of the probability of hit-
ting thresholds. Looking over the nine simulations, the risk estimates will be on the
true line sometimes and other times they are way off. The estimates are highly vari-
able and one should not present only the point estimates of the probability of 90%
decline. At the minimum, confidence intervals need to be added (next section), but
even with confidence intervals, the probability of hitting declines often does not cap-
ture our certainty and uncertainty about extinction risk estimates.

By running Example 7.3, you might have also noticed that there are some time
horizons (10, 20 years) for which the estimate are highly certain (the threshold is
never hit), while for other time horizons (30, 50 years) the estimates are all over
the map. Put another way, you may be able to say with high confidence that a 90%
decline will not occur between years 1 to 20 and that by year 100 it most surely will
have occurred. However, between the years 20 and 100, you are very uncertain about
the risk. The point is that you can be certain about some forecasts while at the same
time being uncertain about other forecasts.

One way to show this is to plot the uncertainty as a function of the forecast,
where the forecast is defined in terms of the forecast length (number of years) and
forecasted decline (percentage). Uncertainty is defined as how much of the 0-1 range
your 95% confidence interval covers. Ellner and Holmes (2008) show such a fig-
ure (their Figure 1). Figure 7.5 shows a version of this figure that you can produce
with the function CSEGtmufigure(u= val, N= val, s2p= val). For the figure,
the values u = −0.05 which is a 5% per year decline, N = 25 so 25 years between the
first and last census, and s2

p = 0.01 are used. The process variability for big mammals
is typically in the range of 0.002 to 0.02.

Example 7.4 (Uncertain and certain regions)

Use the Example 7.4 code to re-create Figure 7.5 and get a feel for when risk esti-
mates are more certain and when they are less certain. N are the number of years of
data, u is the mean population growth rate, and s2p is the process variance.

Example 7.4 code

par(mfrow = c(1, 1))
CSEGtmufigure(N = 50, u = -0.05, s2p = 0.02)
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Fig. 7.5. This figure shows the region of high uncertainty (dark gray). In this region, the
minimum 95% confidence intervals (meaning no observation error) span 80% of the 0 to 1
probability. That is, we are uncertain if the probability of a specified decline is close to 0 or
close to 1. The white area shows where the upper 95% CIs does not exceed P=0.05. In this
region, we are quite sure the probability of a specified decline is less than 0.05. The black
area shows where the lower 95% confidence interval is above P=0.95. Here we are quite sure
the probability is greater than P=0.95. The light gray is between these two certain/uncertain
extremes.

7.6 More risk metrics and some real data

The previous sections have focused on the probability of hitting thresholds because
this is an important and common risk metric used in population viability analysis and
it appears in IUCN Red List criteria. However, there is high uncertainty associated
with such estimates. Part of the problem is that probability is constrained to be 0 to 1,
and it is easy to get estimates with confidence intervals that span 0 to 1. Other metrics
of risk, û and the distribution of the time to hit a threshold (Dennis et al., 1991), do
not have this problem and may be more informative. Figure 7.6 shows different risk
metrics from Dennis et al. (1991) on a single plot. This figure is generated by a call
to the function CSEGriskfigure():
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dat <- read.table(datafile, skip = 1)
dat <- as.matrix(dat)
CSEGriskfigure(dat)

The datafile is the name of the data file, with years in column 1 and popula-
tion count (logged) in column 2. CSEGriskfigure() has a number of arguments
that can be passed in to change the default behavior. The variable te is the fore-
cast length (default is 100 years), threshold is the extinction threshold either as
an absolute number, if absolutethresh=TRUE, or as a fraction of current popula-
tion count, if absolutethresh=FALSE. The default is absolutethresh=FALSE and
threshold=0.1. datalogged=TRUE means the data are already logged; this is the
default.

Example 7.5 (Risk figures for different species)

Use the Example 7.5 code to re-create Figure 7.6. The {MARSS} package includes
other data that you can also run: prairiechicken from the endangered Attwater
Prairie Chicken, graywhales from Gerber et al. (1999), and grouse from the Sharp-
tailed Grouse (a species of U.S. federal concern) in Washington State. Note for some
of these other datasets, the Hessian matrix cannot be inverted and you will need to
use CI.method="parametric". The commented lines show how to read in your own
data from a tab-delimited text file with a header line.

Example 7.5 code

# If you have your data in a tab delimited file with a header
# This is how you would read it in using file.choose()
# to call up a directory browser.
# However, the package has the datasets for the examples
# dat=read.table(file.choose(), skip=1)
# dat=as.matrix(dat)
dat <- wilddogs
CSEGriskfigure(dat, CI.method = "hessian", silent = TRUE)

7.7 Confidence intervals

The figures produced by CSEGriskfigure() have confidence intervals (95% and
75%) on the probabilities in the top right panel. A standard way to produce these
intervals is via parametric bootstrapping. Here are the steps in a parametric bootstrap:
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Fig. 7.6. Risk figure using data for the critically endangered African Wild Dog (data from
Ginsberg et al. 1995). This population went extinct after 1992.

• Estimate u, σ2 and η2

• Simulate time series using those estimates and Equations 7.1 and 7.2
• Re-estimate the model parameters from the simulated data (using say MARSS(simdata))
• Repeat for 1000s of time series simulated using your estimated parameters. This

gives a large set of bootstrapped parameter estimates
• For each bootstrapped parameter set, compute a set of extinction estimates (

Equation 7.3 and code from Example 7.3)
• The α% ranges on those bootstrapped extinction estimates gives the α confidence

intervals on the probabilities of hitting thresholds
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The {MARSS} package provides the function MARSSparamCIs() to add boot-
strapped confidence intervals to fitted models (type ?MARSSparamCIs to learn about
the function).

In the function CSEGriskfigure(), you can set CI.method = c("hessian",
"parametric", "innovations", "none") to tell it how to compute the confi-
dence intervals. The methods ‘parametric’ and ‘innovations’ specify parametric and
non-parametric bootstrapping respectively. Producing parameter estimates by boot-
strapping is quite slow. Approximate confidence intervals on the parameters can be
generated rapidly using the inverse of the estimate of the Hessian matrix (method
‘hessian’). This uses an estimate of the variance-covariance matrix of the parameters
(the inverse of the Hessian matrix). Using an estimated Hessian matrix to compute
confidence intervals is a handy trick that can be used for all sorts of maximum-
likelihood parameter estimates.

7.8 Discussion

Data with cycles, from age-structure or predator-prey interactions, are difficult to
analyze and the EM algorithm used in the {MARSS} package will give poor esti-
mates for this type of data. The slope method (Holmes, 2001) is more robust to those
problems. Holmes et al. (2007) used the slope method in a large study of data from
endangered and threatened species, and Ellner and Holmes (2008) showed that the
slope estimates are close to the theoretical minimum uncertainty. Especially, when
doing a population viability analysis using a time series with fewer than 25 years
of data, the slope method is often less biased and (much) less variable because that
method is less data-hungry (Holmes, 2004). However the slope method is not a true
maximum-likelihood method and this constrains the types of further analyses you
can do (such as model selection).





8

Combining multi-site data to estimate regional
population trends

8.1 Harbor seals in the Puget Sound, WA.

In this application, we will use multivariate state-space models to combine sur-
veys from multiple regions (or sites) into one estimate of the average long-term pop-
ulation growth rate and the year-to-year variability in that growth rate. Note this is
not quite the same as estimating the trend; “trend" often means “what population
change happened?", whereas the long-term population growth rate refers to the un-
derlying population dynamics. We will use as our example a dataset from harbor
seals in Puget Sound, Washington, USA.

We have five regions (or sites) where harbor seals were censused from 1978-1999
while hauled out of land Jeffries et al. (2003). During the period of this dataset, har-
bor seals were recovering steadily after having been reduced to low levels by hunting
prior to protection. The methodologies were consistent throughout the 20 years of the
data but we do not know what fraction of the population that each region represents
nor do we know the observation-error variance for each region. Given differences be-
tween behaviors of animals in different regions and the numbers of haul-outs in each
region, the observation errors may be quite different. The regions have had different
levels of sampling; the best sampled region has only 4 years missing while the worst
has over half the years missing (Figure 8.1).

We will assume that the underlying population process is a stochastic exponential
growth process with rates of increase that were not changing through 1978-1999.
However, we are not sure if all five regions sample a single “total Puget Sound”
population or if there are independent subpopulations. We will estimate the long-term
population growth rate using different assumptions about the population structures
(one big population versus multiple smaller ones) and observation error structures to
see how different assumptions change the trend estimates.

Type RShowDoc("Chapter_SealTrend.R",package="MARSS") at the R command line
to open a file with all the code for the examples in this chapter.
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Fig. 8.1. Plot of the of the count data from the five harbor seal regions (Jeffries et al. 2003).
The numbers on each line denote the different regions: 1) Strait of Juan de Fuca (SJF), 2) San
Juan Islands (SJI), 2) Eastern Bays (EBays), 4) Puget Sound (PSnd), and 5) Hood Canal (HC).
Each region is an index of the total harbor seal population, but the bias (the difference between
the index and the true population size) for each region is unknown.

The harbor seal data are included in the {MARSS} package. The data have
time running down the rows and years in the first column. We need time across the
columns for the MARSS() function, so we will transpose the data:

dat <- t(harborSealWA) # Transpose
years <- dat[1, ] # [1,] means row 1
n <- nrow(dat) - 1
dat <- dat[2:nrow(dat), ] # no years

The years are in column 1 of dat and the logged data are in the rest of the columns.
The number of observation time series (n) is the number of rows in dat minus 1 (for
years row). Let’s look at the first few years of data:

print(harborSealWA[1:8, ], digits = 3)

Year SJF SJI EBays PSnd HC
[1,] 1978 6.03 6.75 6.63 5.82 6.6
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[2,] 1979 NA NA NA NA NA
[3,] 1980 NA NA NA NA NA
[4,] 1981 NA NA NA NA NA
[5,] 1982 NA NA NA NA NA
[6,] 1983 6.78 7.43 7.21 NA NA
[7,] 1984 6.93 7.74 7.45 NA NA
[8,] 1985 7.16 7.53 7.26 6.60 NA

The NA’s in the data are missing values.

8.1.1 A MARSS model for Puget Sound harbor seals

The first step is to mathematically specify the population structure and how the re-
gions relate to that structure. The general state-space model is

xt = Bxt−1 +u+wt , where wt ∼ MVN(0,Q)

yt = Zxt +a+vt , where vt ∼ MVN(0,R)

where all the bolded symbols are matrices. To specify the structure of the population
and observations, we will specify what those matrices look like.

8.2 A single well-mixed population with i.i.d. errors

When we are looking at data over a large geographic region, we might make the
assumption that the different census regions are measuring a single population if
we think animals are moving sufficiently such that the whole area (multiple regions
together) is “well-mixed". We write a model of the total population abundance for
this case as:

nt = exp(u+wt)nt−1, (8.1)

where nt is the total count in year t, u is the mean population growth rate, and wt is
the deviation from that average in year t. We then take the log of both sides and write
the model in log space:

xt = xt−1 +u+wt , where wt ∼ N(0,q) (8.2)

xt = lognt . When there is one effective population, there is one x, therefore xt is
a 1 × 1 matrix. There is one population growth rate (u) and there is one process
variance (q). Thus u and Q are 1×1 matrices.

8.2.1 The observation process

We assume that all five regional time series are observations of this one population
trajectory but they are scaled up or down relative to that trajectory. In effect, we
think that animals are moving around and our regional samples are some fraction
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of the population. There is year-to-year variation in the fraction in each region, just
by chance. Notice that under this analysis, we do not think the regions represent
independent subpopulations but rather independent observations of one population.
Our model for the data, yt = Zxt +a+vt , is written as:




y1
y2
y3
y4
y5




t

=




1
1
1
1
1




xt +




0
a2
a3
a4
a5




+




v1
v2
v3
v4
v5




t

(8.3)

Each yi is the time series for a different region. The a’s are the bias between
the regional sample and the total population. The a’s are scaling (or intercept-like)
parameters1. We allow that each region could have a unique observation variance
and that the observation errors are independent between regions. Lastly, we assume
that the observations errors on log(counts) are normal and thus the errors on (counts)
are log-normal.2

For our first analysis, we assume that the observation variance is equal across
regions but the errors are independent. This means we estimate one observation vari-
ance instead of five. This is a fairly standard assumption for data that come from
the uniform survey methodology.3. We specify independent observation errors with
identical variances by specifying that the v’s come from a multivariate normal distri-
bution with variance-covariance matrix R (v ∼ MVN(0,R)), where

R =




r 0 0 0 0
0 r 0 0 0
0 0 r 0 0
0 0 0 r 0
0 0 0 0 r




(8.4)

Z specifies which observation time series, yi,1:T , is associated with which popula-
tion trajectory, x j,1:T . Z is like a look up table with 1 row for each of the n observation
time series and 1 column for each of the m population trajectories. A 1 in row i col-
umn j means that observation time series i is measuring state process j. Otherwise

1 To get rid of the a’s, we scale multiple observation time series against each other; thus one
a will be fixed at 0. Estimating the bias between regional indices and the total population
is important for getting an estimate of the total population size. The type of time-series
analysis that we are doing here (trend analysis) is not useful for estimating a’s. Instead to
get a’s one would need some type of mark-recapture data. However, for trend estimation,
the a’s are not important. The regional observation variance captures increased variance
due to a regional estimate being a smaller sample of the total population.

2 The assumption of normality is not unreasonable since these regional counts are the sum
of counts across multiple haul-outs.

3 By the way, this is not a good assumption for these data since the number haul-outs in each
region varies and the regional counts are the sums across all haul-outs in a region. We will
change this assumption in the next fit and see that the AIC values decline.



8.2 A single well-mixed population with i.i.d. errors 93

the value in Zi j = 0. Since we have only 1 population trajectory, all the regions must
be measuring that one population trajectory. Thus Z is n×1:

Z =




1
1
1
1
1




(8.5)

8.2.2 Fitting the model

We have specified the mathematical form of our state-space model. The next step is
to fit this model with MARSS(). The function call will now look like:

kem1 <- MARSS(dat, model = list(Z = Z.model, R = R.model))

The model list argument tells the MARSS() function the model structure, i.e., the
form of Z, u, Q, etc. For our first analysis, we only need to set the model structure
for Z and R. Since there is only one population, there is only one u and Q (they are
scalars), so they have no ’structure’.

First we specify the Z matrix. We need to tell the MARSS function that Z is a
5 × 1 matrix of 1s (as in Equation 8.3). We can do this two ways. We can pass in
Z.model as a matrix of ones, matrix(1,5,1), just like in Equation 8.3 or we can
pass in a vector of five factors, factor(c(1,1,1,1,1)). The i-th factor specifies
which population trajectory the i-th observation time series belongs to. Since there is
only one population trajectory in this first analysis, we will have a vector of five 1’s:
every observation time series is measuring the first, and only, population trajectory.

Z.model <- factor(c(1, 1, 1, 1, 1))

Note, the vector (the c() bit) must be wrapped in factor() so that MARSS recognizes
what it is. You can use either numeric or character vectors: c(1,1,1,1,1) is the
same as c("PS","PS","PS","PS","PS").

Next we specify that the R variance-covariance matrix only has terms on the
diagonal (the variances) with the off-diagonal terms (the covariances) equal to zero:

R.model <- "diagonal and equal"

The ‘and equal’ part specifies that the variances are the same value. We will relax
this assumption later.

Code 8.2 shows you how to fit the single population model (Equations 8.2 and
8.3) to the harbor seal data.
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Fig. 8.2. Plot of the estimate of “log total harbor seals in Puget Sound”. The estimate of the
total count has been scaled relative to the first time series. The 95% confidence intervals on
the population estimates are the dashed lines. These are not the confidence intervals on the
observations, and the observations (the numbers) will not fall between the confidence interval
lines.

Code 8.2

# Code to fit the single population model with i.i.d. errors
# Read in data
dat <- t(harborSealWA) # MARSS needs time ACROSS columns
years <- dat[1, ]
n <- nrow(dat) - 1
dat <- dat[2:nrow(dat), ]
legendnames <- (unlist(dimnames(dat)[1]))
# estimate parameters
Z.model <- factor(c(1, 1, 1, 1, 1))
R.model <- "diagonal and equal"
kem1 <- MARSS(dat, model = list(Z = Z.model, R = R.model))
# make figure
graphics::matplot(years, t(dat),
xlab = "", ylab = "Index of log abundance",
pch = c("1", "2", "3", "4", "5"), ylim = c(5, 9), bty = "L"

)
lines(years, kem1$states - 1.96 * kem1$states.se,
type = "l",
lwd = 1, lty = 2, col = "red"

)
lines(years, kem1$states + 1.96 * kem1$states.se,
type = "l",
lwd = 1, lty = 2, col = "red"

)
lines(years, kem1$states, type = "l", lwd = 2)
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8.2.3 The MARSS() output

The output from MARSS(), here assigned the name kem1, is a list of objects:

names(kem1)

The maximum-likelihood estimates of “total harbor seal population” scaled to the
first observation data series (Figure 8.2) are in kem1$states, and kem1$states.se
are the standard errors on those estimates. To get 95% confidence intervals, use
kem1$states +/- 1.96*kem1$states.se. Figure 8.2 shows a plot of kem1$states
with its 95% confidence intervals over the data. Because kem1$states has been
scaled relative to the first time series, it is on top of that time series. One of the a
cannot be estimated and arbitrarily our algorithm chooses a1 = 0, so the population
estimate is scaled to the first observation time series.

The estimated parameters are output with the function coef(): coef(kem1).
To get the estimate just for U, which is the estimated long-term population growth
rate, use coef(kem1)$U. Multiply by 100 to get the percent increase per year. The
estimated process variance is given by coef(kem2)$Q.

The log-likelihood of the fitted model is in kem1$logLik. We estimated one
initial x (t = 1), one process variance, one u, four a’s, and five observation variances.
So K = 12 parameters. The AIC of this model is −2 × log-like + 2K, which we can
show by typing kem1$AIC.

8.3 Single population with independent and non-identical errors

Here is the estimated R matrix for our first model:

coef(kem1, type = "matrix")$R

SJF SJI EBays PSnd HC
SJF 0.04523437 0.00000000 0.00000000 0.00000000 0.00000000
SJI 0.00000000 0.04523437 0.00000000 0.00000000 0.00000000
EBays 0.00000000 0.00000000 0.04523437 0.00000000 0.00000000
PSnd 0.00000000 0.00000000 0.00000000 0.04523437 0.00000000
HC 0.00000000 0.00000000 0.00000000 0.00000000 0.04523437

Notice that the variances along the diagonal are all the same—we estimated one
observation variance and it applied to all observation time series. We might be able
to improve the fit (at the cost of more parameters) by assuming that the observation
variance is different across regions while the errors are still independent. This means
we estimate five observation variances instead of one. In this case, R has the form:

R =




r1 0 0 0 0
0 r2 0 0 0
0 0 r3 0 0
0 0 0 r4 0
0 0 0 0 r5




(8.6)

To impose this model, we set the R model to
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R.model <- "diagonal and unequal"

This tells MARSS that all the r’s along the diagonal in R are different. To fit this model
to the data, call MARSS() as:

Z.model <- factor(c(1, 1, 1, 1, 1))
R.model <- "diagonal and unequal"
kem2 <- MARSS(dat, model = list(Z = Z.model, R = R.model))

We estimated one initial x, one process variance, one u, four a’s, and five obser-
vation variances. So K = 11 parameters. The AIC for this new model compared to
the old model with one observation variance is:

c(kem1$AIC, kem2$AIC)

[1] 8.813447 -9.323982

A smaller AIC means a better model. The difference between the one observation
variance versus the unique observation variances is >10, suggesting that the unique
observation variances model is better.

One of the key diagnostics when you are comparing fits from multiple models is
whether the model is flexible enough to fit the data. This can be checked by looking
for temporal trends in the residuals between the fitted data (e.g., the predicted value
of the data given the states estimates) and the actual data. These are the smoothations
model residuals (as opposed to the innovations model residuals). In Figure 8.3, the
residuals for the second analysis are shown. Ideally, these residuals should not have
a temporal trend. The fact that the residuals have a strong temporal trend is an indi-
cation that our one population model is too restrictive for the data4. Code 8.3 shows
you how to fit the second model and make the diagnostics plot.

Code 8.3

# Fit the single population model with independent and unequal errors
Z.model <- factor(c(1, 1, 1, 1, 1))
R.model <- "diagonal and unequal"
kem2 <- MARSS(dat, model = list(Z = Z.model, R = R.model))
coef(kem2) # the estimated parameter elements
kem2$logLik # log likelihood
c(kem1$AIC, kem2$AIC) # AICs
plot(kem2, plot.type="model.resids.ytT")

4 When comparing models via AIC, it is important that you only compare models that are
flexible enough to fit the data. Fortunately if you neglect to do this, the inadequate models
will usually have very high AICs and fall out of the mix anyhow.
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plot type = model.resids.ytT
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Fig. 8.3. Residuals for the model with a single population. The plots of the residuals should
not have trends with time, but they do. This is an indication that the single population model
is inconsistent with the data.

8.4 Two subpopulations, north and south

For the third analysis, we will change our assumption about the structure of the
population. We will assume that there are two subpopulations, north and south, and
that regions 1 and 2 (Strait of Juan de Fuca and San Juan Islands) fall in the north
subpopulation and regions 3, 4 and 5 fall in the south subpopulation. For this analysis,
we will assume that these two subpopulations share their growth parameter, u, and
process variance, q, since they share a similar environment and prey base. However
we postulate that because of fidelity to natal rookeries for breeding, animals do not
move much year-to-year between the north and south and the two subpopulations are
independent.

We need to write down the state-space model to reflect this population structure.
There are two subpopulations, xn and xs, and they have the same growth rate u:

[
xn
xs

]

t
=

[
xn
xs

]

t−1
+

[
u
u

]
+

[
wn
ws

]

t
(8.7)
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We specify that they are independent by specifying that their year-to-year population
fluctuations (their process errors) come from a multivariate normal with no covari-
ance: [

wn
ws

]

t
∼ MV N

([
0
0

]
,

[
q 0
0 q

])
(8.8)

For the observation process, we use the Z matrix to associate the regions with
their respective xn and xs values:




y1
y2
y3
y4
y5




t

=




1 0
1 0
0 1
0 1
0 1




[
xn
xs

]

t
+




0
a2
0
a4
a5




+




v1
v2
v3
v4
v5




t

(8.9)

8.4.1 Specifying the model elements

We need to change the Z specification to indicate that there are two subpopulations
(north and south), and that regions 1 and 2 are in the north subpopulation and regions
3,4 and 5 are in the south subpopulation. There are a few ways, we can specify this
Z matrix for MARSS():

Z.model <- matrix(c(1, 1, 0, 0, 0, 0, 0, 1, 1, 1), 5, 2)
Z.model <- factor(c(1, 1, 2, 2, 2))
Z.model <- factor(c("N", "N", "S", "S", "S"))

Which you choose is a matter of preference as they all specify the same form for Z.
We also want to specify that the u’s are the same for each subpopulation and that

Q is diagonal with equal q’s. To do this, we set

U.model <- "equal"
Q.model <- "diagonal and equal"

This says that there is one u and one q parameter and both subpopulations share it (if
we wanted the u’s to be different, we would use U.model="unequal" or leave off
the u model since the default behavior is U.model="unequal").

Code 8.4 puts all the pieces together and shows you how to fit the north and south
population model and create the residuals plot (Figure 8.4). The residuals look better
(less temporal trend) but the Hood Canal residuals are still have a trend.
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Code 8.4

# fit the north and south population model
Z.model <- factor(c(1, 1, 2, 2, 2))
U.model <- "equal"
Q.model <- "diagonal and equal"
R.model <- "diagonal and unequal"
kem3 <- MARSS(dat, model = list(
Z = Z.model,
R = R.model, U = U.model, Q = Q.model

))
# plot smoothation residuals
plot(kem3, plot.type="model.resids.ytT")
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Fig. 8.4. The residuals for the analysis with a north and south subpopulation. The plots of the
residuals should not have trends with time. Compare with the residuals for the analysis with
one subpopulation.
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8.5 Other population structures

Now work through a number of different structures and examine how your estima-
tion of the mean population growth rate varies under different assumptions about the
structure of the population and the data. You can compare the model fits using AIC
(or AICc). For AIC, lower is better and only the relative differences matter. A differ-
ence of 10 between two AICs means substantially more support for the model with
lower AIC. A difference of 30 or 40 between two AICs is very large.

8.5.1 Five subpopulations

Analyze the data using a model with five subpopulations, where each of the five cen-
sus regions is sampling one of the subpopulations. Assume that the subpopulations
are independent (diagonal Q), however let each subpopulation share the same popu-
lation parameters, u and q. Code 8.5.1 shows how to set the MARSS() arguments for
this case. You can use R.model="diagonal and equal" to make all the observa-
tion variances equal.

Code 8.5.1

Z.model <- factor(c(1, 2, 3, 4, 5))
U.model <- "equal"
Q.model <- "diagonal and equal"
R.model <- "diagonal and unequal"
kem <- MARSS(dat, model = list(
Z = Z.model,
U = U.model, Q = Q.model, R = R.model

))

8.5.2 Two subpopulations with different population parameters

Analyze the data using a model that assumes that the Strait of Juan de Fuca and San
Juan Islands census regions represent a northern Puget Sound subpopulation, while
the other three regions represent a southern Puget Sound subpopulation. This time
assume that each population trajectory (north and south) has different u and q param-
eters: un, us and qn, qs. Also assume that each of the five census regions has a differ-
ent observation variance. Try to write your own code. If you get stuck, you can find R
code for this model by typing RShowDoc("Chapter_SealTrend.R",package="MARSS")
at the R command line.

In math form, this model is:
[

xn
xs

]

t
=

[
xn
xs

]

t−1
+

[
un
us

]
+

[
wn
ws

]

t
,

[
wn
ws

]

t
∼ MVN

(
0,

[
qn 0
0 qs

])
(8.10)
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y1
y2
y3
y4
y5




t

=




1 0
1 0
0 1
0 1
0 1




[
xn
xs

]

t
+




0
a2
0
a4
a5




+




v1
v2
v3
v4
v5




t

(8.11)

8.5.3 Hood Canal covaries with the other regions

Analyze the data using a model with two subpopulations with the divisions being
Hood Canal versus everywhere else. In math form, this model is:

[
xp
xh

]

t
=

[
xp
xh

]

t−1
+

[
up
uh

]
+

[
wp
wh

]

t
,

[
wp
wh

]

t
∼ MVN

(
0,

[
q c
c q

])
(8.12)




y1
y2
y3
y4
y5




t

=




1 0
1 0
1 0
1 0
0 1




[
xp
xh

]

t
+




0
a2
a3
a4
0




+




v1
v2
v3
v4
v5




t

(8.13)

To specify that Q has one value on the diagonal (one variance) and one value on
the off-diagonal (covariance) you can specify Q.model two ways:

Q.model <- "equalvarcov"
Q.model <- matrix(c("q", "c", "c", "q"), 2, 2)

8.5.4 Three subpopulations with shared parameter values

Analyze the data using a model with three subpopulations as follows: north (regions
1 and 2), south (regions 3 and 4), Hood Canal (region 5). You can specify that some
subpopulations share parameters while others do not. First, let’s specify that each
population is affected by independent environmental variability, but that the variance
of that variability is the same for the two interior populations:

Q.model <- matrix(list(0), 3, 3)
diag(Q.model) <- c("coastal", "interior", "interior")
print(Q.model)

Notice that Q is a diagonal matrix (independent year-to-year environmental vari-
ability) but the variance of two of the populations is the same. Notice too that the
off-diagonal terms are numeric; they do not have quotes. We specified Q using a ma-
trix of class list, so that we could have numeric values (fixed) and character values
(estimated parameters).

In a similar way, we specify that the observation errors are independent but that
estimates from an airplane do not have the same variance as those from a boat:

R.model <- matrix(list(0), 5, 5)
diag(R.model) <- c("boat", "boat", "plane", "plane", "plane")
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MARSS also has a helper function ldiag() to make this matrix:

R.model <- ldiag(c("boat", "boat", "plane", "plane", "plane"))

For the long-term trends, we specify that x1 and x2 share a long-term trend
(“puget sound”) while x3 is allowed to have a separate trend (“hood canal”).

U.model <- matrix(c("puget sound", "puget sound", "hood canal"), 3, 1)

8.6 Discussion

There are a number of corners that we cut in order to show you code that runs quickly:

• We ran the code starting from one initial condition. For a real analysis, you should
start from a large number of random initial conditions and use the one that gives
the highest likelihood. Since the EM algorithm is a “hill-climbing” algorithm,
this ensures that it did not get stuck on a local maxima. See Chapter 6 for a
discussion of initial conditions searchers.

• We assume independent observation and process errors. Depending on your sys-
tem, observation errors may be driven by large-scale environmental factors (tem-
perature, tides, prey locations) that would cause your observation errors to covary
across regions. If your observation errors strongly covary between regions and
you treat them as independent, this could be bad for your analysis. Unfortunately,
separating covariance across observation versus process errors will require much
data (to have any power). In practice, the first step is to think hard about what
drives sightability for your species and what are the relative levels of process and
observation variance. You may be able to subsample your data in a way that will
make the observation errors more independent.

• The MARSS() argument control specifies the options for the EM algorithm. We
left the default tolerance for the convergence test. You would want to set this
lower for a real analysis. You will need to up the maxit argument correspond-
ingly.

• We used the large-sample approximation for AIC instead of a bootstrap AIC that
is designed to correct for small sample size in state-space models. The bootstrap
metric, AICb, takes a long time to run. Use the call MARSSaic(kem, output=c("AICbp"))
to compute AICb. We could have shown AICc, which is the small-sample size
corrector for non-state-space models. Type kem$AICc to get that.

Finally, in a real (maximum-likelihood) analysis, one needs to be careful not to
dredge the data. The temptation is to look at the data and pick a population structure
that will fit that data. This can lead to including models in your analysis that have no
biological basis. In practice, we spend a great deal of time discussing the population
structure with biologists working on the species and review all the biological data that
might tell us what are reasonable structures. From that, a set of model structures to
use are selected. Other times, a particular model structure needs to be used because
the population structure is not in question rather it is a matter of using that pre-
specified structure and using all the data to get parameter estimates for forecasting.
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Some more questions you might ponder

Do different assumptions about whether the observation error variances are all iden-
tical versus different affect your estimate of the long-term population growth rate (u)?
You may want to rerun Examples 3-7 with the R.model changed. R.model="diagonal
and unequal" means measurement variances all different versus "diagonal and
equal".

Do assumptions about the underlying structure of the population affect your es-
timates of u? Structure here means number of subpopulations and which areas are in
which subpopulation.

The confidence intervals for the first two analyses are very tight because the
estimated process variance, Q, was very small. Why do you think process variance
(q) was forced to be so small? Hint: We are forcing there to be one and only one
true population trajectory and all the observation time series have to fit that one time
series. Look at the AICs too.
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Identifying spatial population structure and
covariance

9.1 Harbor seals on the U.S. west coast

In this application, we use harbor seal abundance estimates along the west coast
to examine large-scale spatial structure. Harbor seals are distributed along the west
coast of the U.S. from California to Washington. The populations have been sur-
veyed at haul-out sites since the mid-1970s (Figure 9.1) and have been increasing
steadily since the 1972 Marine Mammal Protection Act. See ?harborSeal for the
data sources.

For management purposes, three stocks are recognized: the CA stock, the OR/WA
coastal stock which consists of four regions (Northern/Southern Oregon, Coastal Es-
tuaries, Olympic Peninsula), and the inland WA stock which consists of the regions
in the WA inland waters minus Hood Canal (Figure 9.1). Differences exist in the
demographics across regions (e.g., pupping dates), however mtDNA analyses and
tagging studies support the larger stock structure. Harbor seals are known for strong
site fidelity, but at the same time travel large distances to forage.

Our goal is to address the following questions about spatial structure: 1) Does
population abundance data support the existing management boundaries, or are there
alternative groupings that receive more support?, 2) Do subpopulations (if they ex-
ist) experience independent environmental variability or correlated variability? and
3) Does the Hood Canal site represent a distinct subpopulation? To address these
questions, we will mathematically formulate different hypotheses about population
structure via different MARSS models. We will then compare the data support for
different models using model selection criteria, specifically AICc and AIC weights.

9.1.1 MARSS models for a population with spatial structure

The mathematical form of the model we will use is

Type RShowDoc("Chapter_SealPopStructure.R",package="MARSS") at the R com-
mand line to open a file with all the code for the examples in this chapter.
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Fig. 9.1. Map of spatial distribution of harbor seal survey regions in Washington and Oregon.
In addition to these nine survey regions, we also have data from the Georgia Strait just north
of the San Juan Islands, the California coast and the Channels Islands in Southern California.
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xt = xt−1 +u+wt where wt ∼ MVN(0,Q)

yt = Zxt +a+vt where vt ∼ MVN(0,R)

x0 ∼ MVN(π,Λ)

(9.1)

B is in front of x but is left off above since it is the identity matrix1. We will use Z, u,
and Q to specify different hypotheses about the population structure. The form of a
will be “scaling” in all cases. Aerial survey methodology has been relatively constant
across time and space, and we will assume that all the time series from each region
has identical and independent observation error variance, which means a diagonal R
matrix with one variance term on the diagonal2.

Each call to MARSS() will look like

fit <- MARSS(sealData, model=list(
Z = Z.model, Q = Q.model, ...))

where the ... are components of the model list that are the same across all models.
We will specify different Z.model and Q.model in order to model different popula-
tion spatial structures.

9.2 Question 1, How many distinct subpopulations?

We will start by evaluating the data support for the following hypotheses about the
population structure:

H1 3 subpopulations defined by stock
H2 2 subpopulations defined by coastal versus WA inland
H3 2 subpopulations defined by north and south split in the middle of Oregon
H4 4 subpopulations defined by N coastal, S coastal, SJF+Georgia Strait, and Puget

Sound
H5 All regions are part of the same panmictic population
H6 Each of the 11 regions is a subpopulation

We will analyze each of these under the assumption of independent process errors
with each subpopulation having different variances or the same variance.

9.2.1 Specify the Z matrices

The Z matrices specify the relationship between the survey regions and the subpop-
ulations and allow us to specify the spatial population structures in the hypotheses.
Each column of Z corresponds to a different subpopulation and associates regions

1 a diagonal matrix with 1s on the diagonal
2 The sampling regions have different number of sites where animals are counted. But we

are working with log counts. We assume that the distribution of percent errors is the same
(the probability of a 10% over-count is the same) and thus that the variances are similar on
the log-scale.
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with particular subpopulations. For example for hypothesis 1, column 1 of the Z ma-
trix is OR/WA Coastal, column 2 is inland WA (ps for Puget Sound) and column 3
is CA. The Z matrix for hypotheses 1, 2, 4, and 5 take the following form:

H1 H2 H4 H5
Z Z Z Z

wa.or ps ca coast ps nc is ps sc pan
Coastal Estuaries 1 0 0 1 0 1 0 0 0 1
Olympic Peninsula 1 0 0 1 0 1 0 0 0 1
Str. Juan de Fuca 0 1 0 0 1 0 1 0 0 1
San Juan Islands 0 1 0 0 1 0 1 0 0 1

Eastern Bays 0 1 0 0 1 0 0 1 0 1
Puget Sound 0 1 0 0 1 0 0 1 0 1
CA.Mainland 0 0 1 1 0 0 0 0 1 1

CA.ChannelIslands 0 0 1 1 0 0 0 0 1 1
OR North Coast 1 0 0 1 0 1 0 0 0 1
OR South Coast 1 0 0 1 0 0 0 0 1 1
Georgia Strait 0 1 0 0 1 0 1 0 0 1

To tell MARSS() the form of Z, we construct the same matrix in R. For example,
for hypotheses 1, we can write:

Z.model <- matrix(0, 11, 3)
Z.model[c(1, 2, 9, 10), 1] <- 1 # which elements in col 1 are 1
Z.model[c(3:6, 11), 2] <- 1 # which elements in col 2 are 1
Z.model[7:8, 3] <- 1 # which elements in col 3 are 1

MARSS has a shortcut for making this kind of Z matrix using factor(). The
following code specifies the same Z matrix:

Z1 <- factor(c("wa.or", "wa.or", rep("ps", 4),
"ca", "ca", "wa.or", "wa.or", "bc"))

Each element in the c() vector is for one of the rows of Z and indicates which
column the “1” appears in or which row of your data belongs to which subpopulation.
Notice the vector is 11 elements in length; one element for each row of data (in this
case survey region).

9.2.2 Specify the u structure

We will assume that subpopulations can have a unique population growth rate. Math-
ematically, this means that the u matrix in Equation 9.1 looks like this for hypotheses
1 (3 subpopulations):
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u1
u2
u3




To specify this, we construct U.model as a character matrix where shared elements
have the same character name. For example,

U.model <- matrix(c("u1", "u2", "u3"), 3, 1)

for a three subpopulation model. Alternatively, we can use the shortcut U.model="unequal".

9.2.3 Specify the Q structures

For our first analysis, we fit a model where the subpopulations experience inde-
pendent process errors. We will use two different types of independent process er-
rors: independent process errors with different variances and independent process
errors with identical variance. Independence is specified with a diagonal variance-
covariance matrix with 0s on the off-diagonals.

Independent process errors with different variances is a diagonal matrix with
different values on the diagonal:




q1 0 0
0 q2 0
0 0 q3




This matrix has fixed numeric values, the zeros, combined with symbols q1, q2 and
q3, representing estimated values. We specified this for MARSS() using a list matrix
which combines numeric values (the fixed zeros) with character values (names of
the estimated elements). The following produces this and printing it shows that it
combines numeric values and character strings in quotes.

Q.model <- matrix(list(0), 3, 3)
diag(Q.model) <- c("q1", "q2", "q3")
Q.model

[,1] [,2] [,3]
[1,] "q1" 0 0
[2,] 0 "q2" 0
[3,] 0 0 "q3"

We can also use the shortcut Q.model="diagonal and unequal".
Independent process errors with identical variance is a diagonal matrix with one

value on the diagonal: 


q 0 0
0 q 0
0 0 q




Q.model <- matrix(list(0), 3, 3)
diag(Q.model) <- "q"
Q.model
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[,1] [,2] [,3]
[1,] "q" 0 0
[2,] 0 "q" 0
[3,] 0 0 "q"

The shortcut for this form is Q.model="diagonal and equal".

9.3 Fit the different models

The dataset harborSeal is a 29-year dataset of abundance indices for each of 12
regions between 1975-2004 (Figure 9.2). We start by setting up our data matrix. We
will leave off Hood Canal (column 8) for now.

years <- harborSeal[, 1] # first col is years
# leave off Hood Canal data for now
sealData <- t(harborSeal[, c(2:7, 9:13)])
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Fig. 9.2. Plot of the of the harbor seal sites in the harborSeal dataset. Each point is an index of
the harbor seal abundance in that region.



9.3 Fit the different models 111

We will set up our models so we can fit all of them with one loop of code.
First the Z models.

# H1 stock
Z1 <- factor(c("wa.or", "wa.or", rep("ps", 4),

"ca", "ca", "wa.or", "wa.or", "bc"))
# H2 coastal+PS
Z2 <- factor(c(rep("coast", 2), rep("ps", 4), rep("coast", 4), "ps"))
# H3 N and S
Z3 <- factor(c(rep("N", 6), "S", "S", "N", "S", "N"))
# H4 North Coast, Inland Strait, Puget Sound, South Coast
Z4 <- factor(c("nc", "nc", "is", "is", "ps", "ps",

"sc", "sc", "nc", "sc", "is"))
# H5 panmictic
Z5 <- factor(rep("pan", 11))
# H6 Site
Z6 <- factor(1:11) # site
Z.models <- list(Z1, Z2, Z3, Z4, Z5, Z6)
names(Z.models) <-
c("stock", "coast+PS", "N-S", "NC+Strait+PS+SC", "panmictic", "site")

Next we set up the Q models.

Q.models <- c("diagonal and equal", "diagonal and unequal")

The rest of the model matrices have the same form across all models.

U.model <- "unequal"
R.model <- "diagonal and equal"
A.model <- "scaling"
B.model <- "identity"
x0.model <- "unequal"
V0.model <- "zero"
model.constant <- list(
U = U.model, R = R.model, A = A.model,
x0 = x0.model, V0 = V0.model, tinitx = 0

)

We loop through the models, fit and store the results:

out.tab <- NULL
fits <- list()
for (i in 1:length(Z.models)) {
for (Q.model in Q.models) {

fit.model <- c(list(Z = Z.models[[i]], Q = Q.model), model.constant)
fit <- MARSS(sealData,
model = fit.model,
silent = TRUE, control = list(maxit = 1000)

)
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out <- data.frame(
H = names(Z.models)[i], Q = Q.model, U = U.model,
logLik = fit$logLik, AICc = fit$AICc, num.param = fit$num.params,
m = length(unique(Z.models[[i]])),
num.iter = fit$numIter, converged = !fit$convergence,
stringsAsFactors = FALSE

)
out.tab <- rbind(out.tab, out)
fits <- c(fits, list(fit))
if (i == 5) next # one m for panmictic so only run 1 Q

}
}

9.4 Summarize the data support

We will use AICc and AIC weights to summarize the data support for the different
hypotheses. First we will sort the fits based on AICc:

min.AICc <- order(out.tab$AICc)
out.tab.1 <- out.tab[min.AICc, ]

Next we add the ∆AICc values by subtracting the lowest AICc:

out.tab.1 <- cbind(out.tab.1,
delta.AICc = out.tab.1$AICc - out.tab.1$AICc[1]

)

Relative likelihood is defined as exp(−∆AICc/2).

out.tab.1 <- cbind(out.tab.1,
rel.like = exp(-1 * out.tab.1$delta.AICc / 2)

)

The AIC weight for a model is its relative likelihood divided by the sum of all the
relative likelihoods.

out.tab.1 <- cbind(out.tab.1,
AIC.weight = out.tab.1$rel.like / sum(out.tab.1$rel.like)

)

Let’s look at the model weights (out.tab.1):

H Q delta.AICc AIC.weight
NC+Strait+PS+SC diagonal and equal 0.00 0.886
NC+Strait+PS+SC diagonal and unequal 4.15 0.112

N-S diagonal and unequal 12.67 0.002
N-S diagonal and equal 14.78 0.001

coast+PS diagonal and equal 31.23 0.000
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coast+PS diagonal and unequal 33.36 0.000
stock diagonal and equal 34.01 0.000
stock diagonal and unequal 36.84 0.000

panmictic diagonal and equal 48.28 0.000
panmictic diagonal and unequal 48.28 0.000

site diagonal and equal 56.36 0.000
site diagonal and unequal 57.95 0.000

It appears that a population structure north and south coast subpopulations and
two inland subpopulations is more supported than any of the other population
structures—under the assumption of independent process errors. The latter means
that good and bad years are not correlated across the subpopulations. The stock struc-
ture, supported by genetic information, does not appear to correspond to independent
subpopulations and the individual survey regions, which are characterized by differ-
ential pupping times, does not appear to correspond to independent subpopulations
either.

Figure 9.3 shows the the four subpopulation trajectories estimated by the best
fit model. The trajectories have been rescaled so that each starts at 0 in 1975 (to
facilitate comparison).

9.5 Question 2, Are the subpopulations independent?

The assumption of independent process errors is unrealistic given ocean conditions
are correlated across large spatial scales. We will repeat the analysis allowing cor-
related process errors using two different Q models. The first correlated Q model is
correlated process errors with the same variance and covariance. For a model with
three subpopulations, this Q would look like:




q c c
c q c
c c q




We can construct this like so

#identical variances
Q.model <- matrix("c", 3, 3)
diag(Q.model) <- "q"

or use the short-cut Q.model="equalvarcov". The second type of correlated Q we
will use is allows each subpopulation to have a different process variance and co-
variances. For a model with three subpopulations, this is the following variance-
covariance matrix: 


q1 c1,2 c1,3

c1,2 q2 c2,3
c1,2 c2,3 q3




Constructing this is tedious in R, but there is a short-cut: Q.model="unconstrained".
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Fig. 9.3. Estimated trajectories for the four subpopulations in the best-fit model. The plots
have been rescaled so that each is at 0 at 1975.

We will re-run all the Z matrices with these two extra Q types and add them to
our results table.

for (i in 1:length(Z.models)) {
if (i == 5) next # don't rerun panmictic
for (Q.model in c("equalvarcov", "unconstrained")) {

fit.model <- c(list(Z = Z.models[[i]], Q = Q.model), model.constant)
fit <- MARSS(sealData,
model = fit.model,
silent = TRUE, control = list(maxit = 1000)

)
out <- data.frame(
H = names(Z.models)[i], Q = Q.model, U = U.model,
logLik = fit$logLik, AICc = fit$AICc, num.param = fit$num.params,
m = length(unique(Z.models[[i]])),
num.iter = fit$numIter, converged = !fit$convergence,
stringsAsFactors = FALSE

)
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out.tab <- rbind(out.tab, out)
fits <- c(fits, list(fit))

}
}

Again we sort the models by AICc and compute model weights.

min.AICc <- order(out.tab$AICc)
out.tab.2 <- out.tab[min.AICc, ]
fits <- fits[min.AICc]
out.tab.2$delta.AICc <- out.tab.2$AICc - out.tab.2$AICc[1]
out.tab.2$rel.like <- exp(-1 * out.tab.2$delta.AICc / 2)
out.tab.2$AIC.weight <- out.tab.2$rel.like / sum(out.tab.2$rel.like)

Examination of the expanded results table (out.tab.2) shows there is strong
support for correlated process errors; top 10 models shown:

H Q delta.AICc AIC.weight
NC+Strait+PS+SC equalvarcov 0.00 0.976

site equalvarcov 7.65 0.021
NC+Strait+PS+SC unconstrained 11.47 0.003
NC+Strait+PS+SC diagonal and equal 23.39 0.000
NC+Strait+PS+SC diagonal and unequal 27.53 0.000

N-S unconstrained 32.61 0.000
N-S diagonal and unequal 36.06 0.000
N-S equalvarcov 36.97 0.000

stock equalvarcov 37.82 0.000
N-S diagonal and equal 38.16 0.000

The model weight for “equalvarcov”, “unconstrained”, versus “diagonal and equal”
is

c(
sum(out.tab.2$AIC.weight[out.tab.2$Q == "equalvarcov"]),
sum(out.tab.2$AIC.weight[out.tab.2$Q == "unconstrained"]),
sum(out.tab.2$AIC.weight[out.tab.2$Q == "diagonal and equal"])

)

[1] 0.997 0.003 0.000

9.5.1 Looking at the correlation structure in the Q matrix

The 3rd model in the output table is a model with all elements of the process er-
ror variance-covariance matrix estimated. Estimating a variance-covariance matrix
with so many extra parameters is not supported relative to a constrained variance-
covariance matrix with two parameters (compare the AICc for the 1st model and 3rd
model) but looking at the full variance-covariance matrix shows some interesting and
not surprising patterns.

The Q matrix is recovered from the model fit using this command
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Q.unc <- coef(fits[[3]], type = "matrix")$Q

The diagonal of this matrix shows that each region appears to experience process
variability of a similar magnitude:

diag(Q.unc)

nc is ps sc
0.009049512 0.007451479 0.004598690 0.005276587

We can compute the correlation matrix as follows. Row names are added to make
the matrix more readable.

h <- diag(1 / sqrt(diag(Q.unc)))
Q.corr <- h %*% Q.unc %*% h
rownames(Q.corr) <- unique(Z4)
colnames(Q.corr) <- unique(Z4)
Q.corr

nc is ps sc
nc 1.0000000 0.5970202 0.6421536 0.9163056
is 0.5970202 1.0000000 0.9970869 0.2271385
ps 0.6421536 0.9970869 1.0000000 0.2832502
sc 0.9163056 0.2271385 0.2832502 1.0000000

The correlation matrix indicates that the inland strait (‘is’ in the table) subpop-
ulation experiences process errors (good and bad years) that are almost perfectly
correlated with the Puget Sound subpopulation though the two have different popu-
lation growth rates (Figure 9.3). Similarly the north and south coastal subpopulations
(‘nc’ and ‘sc’) experience highly correlated process errors, though again population
growth rates are much higher to the north. There is much higher correlation between
the process errors of the north coastal subpopulation and the nearby inland straits
and Puget Sound subpopulations than between the two inland subpopulations and
the much farther south coastal subpopulation. These patterns are not ecologically
surprising but are not easy to discern looking at the raw count data.

9.6 Question 3, Is the Hood Canal independent?

In the initial analysis, the data from Hood Canal were removed. Hood Canal has
experienced a series of hypoxic events which has led to large perturbations to the
harbor seal prey. We will add the Hood Canal data back in and look at whether
treating Hood Canal as separate is supported compared to treating it as part of the
Puget Sound subpopulation in the top model.

sealData.hc <- rbind(sealData, harborSeal[, 8])
rownames(sealData.hc)[12] <- "Hood.Canal"
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Here are the two Z matrices for a ‘Hood Canal in the Puget Sound’ and ‘Hood Canal
separate’ model:

ZH1 <- factor(c("nc", "nc", "is", "is", "ps",
"ps", "sc", "sc", "nc", "sc", "is", "ps"))

ZH2 <- factor(c("nc", "nc", "is", "is", "ps",
"ps", "sc", "sc", "nc", "sc", "is", "hc"))

Z.models.hc <- list(ZH1, ZH2)
names(Z.models.hc) <- c("hood.in.ps", "hood.separate")

We will test three different Q matrices: a matrix with one variance and one covari-
ance, an unconstrained variance-covariance matrix and a variance-covariance matrix
where the Hood Canal subpopulation has independent process errors.

Q3 <- matrix(list("offdiag"), 5, 5)
diag(Q3) <- "q"
Q3[, 5] <- 0
Q3[5, ] <- 0
Q3[5, 5] <- "q.hc"
Q.models <- list("equalvarcov", "unconstrained", Q3)
names(Q.models) <- c("equalvarcov", "unconstrained", "hood.independent")

The independent Hood Canal Q allow correlation between the other four subpopula-
tions but none between Hood Canal and those four:

Q.models$hood.independent

[,1] [,2] [,3] [,4] [,5]
[1,] "q" "offdiag" "offdiag" "offdiag" 0
[2,] "offdiag" "q" "offdiag" "offdiag" 0
[3,] "offdiag" "offdiag" "q" "offdiag" 0
[4,] "offdiag" "offdiag" "offdiag" "q" 0
[5,] 0 0 0 0 "q.hc"

As before, we loop through the model and create a results table:

out.tab.hc <- NULL
fits.hc <- list()
for (i in 1:length(Z.models.hc)) {
for (j in 1:length(Q.models)) {

if (i == 1 & j == 3) next # Q3 is only for Hood Separate model
Q.model <- Q.models[[j]]
fit.model <- c(list(Z = Z.models.hc[[i]], Q = Q.model), model.constant)
fit <- MARSS(sealData.hc,
model = fit.model,
silent = TRUE, control = list(maxit = 1000)

)
out <- data.frame(
H = names(Z.models.hc)[i], Q = names(Q.models)[j], U = U.model,
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logLik = fit$logLik, AICc = fit$AICc, num.param = fit$num.params,
m = length(unique(Z.models.hc[[i]])),
num.iter = fit$numIter, converged = !fit$convergence,
stringsAsFactors = FALSE

)
out.tab.hc <- rbind(out.tab.hc, out)
fits.hc <- c(fits.hc, list(fit))

}
}

We sort the results by AICc and compute the ∆AICc.

min.AICc <- order(out.tab.hc$AICc)
out.tab.hc <- out.tab.hc[min.AICc, ]
out.tab.hc$delta.AICc <- out.tab.hc$AICc - out.tab.hc$AICc[1]
out.tab.hc$rel.like <- exp(-1 * out.tab.hc$delta.AICc / 2)
out.tab.hc$AIC.weight <- out.tab.hc$rel.like / sum(out.tab.hc$rel.like)

The results table (out.tab.hc) indicates strong support for treating Hood Canal as
a separate subpopulation but not support for completely independent process errors.

H Q delta.AICc AIC.weight
hood.separate equalvarcov 0.00 0.988
hood.separate hood.independent 8.74 0.012

hood.in.ps equalvarcov 23.53 0.000
hood.separate unconstrained 30.65 0.000

hood.in.ps unconstrained 36.66 0.000

9.7 Discussion

In this chapter, we used model selection and AICc model weights to explore the
temporal correlation structure in the harbor seal abundance data from the U.S. west
coast. We used the term ‘subpopulation’, however it should be kept in mind that
we are actually looking at the data support for different spatial patterns of temporal
correlation in the process errors. Treating region A and B as a ‘subpopulation’ in
this context means that we are asking if the counts from A and B can be treated as
observations of the same underlying stochastic trajectory.

Metapopulation structure refers to a case where a larger population is composed
of a collection of smaller temporally independent subpopulations. Metapopulation
structure buffers the variability seen in the larger population and has important con-
sequences for the viability of a population. We tested for temporal independence
using diagonal versus non-diagonal Q matrices. Although the west coast harbor seal
population appears to be divided into ‘subpopulations’ that experience different pop-
ulation growth rates, there is strong temporal correlation in the year-to-year variabil-
ity experienced in these subpopulations. This suggests that this harbor seal popula-
tion does not function as a true metapopulation with independent subpopulations but
rather as a collection of subpopulations that are temporally correlated.
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Dynamic factor analysis (DFA)

10.1 Overview of DFA

In this chapter, we use {MARSS} to do dynamic factor analysis (DFA), which
allows us to look for a set of common underlying trends among a relatively large
set of time series (Harvey, 1989, section 8.5). See also Zuur et al. (2003) which
shows a number of examples of DFA applied to fisheries catch data and densities of
zoobenthos. We will walk through some examples to show you the math behind DFA,
and then in Section 10.4, we will show a short-cut for doing a DFA with MARSS
using form="dfa".

DFA is conceptually different than what we have been doing in the previous
applications. Here we are trying to explain temporal variation in a set of n observed
time series using linear combinations of a set of m hidden random walks, where
m << n. A DFA model is a type of MARSS model with the following structure:

xt = xt−1 +wt where wt ∼ MVN(0,Q)

yt = Zxt +a+vt where vt ∼ MVN(0,R)

x0 ∼ MVN(π,Λ)

(10.1)

The general idea is that the observations (y) are modeled as a linear combination of
hidden trends (x) and factor loadings (Z) plus some offsets (a). The DFA model in
Equation 10.1 and the standard MARSS model in Equation 1.1 are equivalent—we
have simply set the matrix B equal to an m×m identity matrix1 and the vector u = 0.

10.1.1 Writing out a DFA model as a MARSS model

Imagine a case where we had a data set with six observed time series (n = 6) and we
want to fit a model with three hidden trends (m = 3). If we write out our DFA model

Type RShowDoc("Chapter_DFA.R",package="MARSS") at the R command line to open
a file with all the code for the examples in this chapter.

1 a diagonal matrix with 1’s on the diagonal



120 10 Dynamic factor analysis

in MARSS matrix form (ignoring the error structures and initial conditions for now),
it would look like this:
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(10.2)

The process errors of the hidden trends would be



w1
w2
w3




t

∼ MVN






0
0
0


 ,




q11 q12 q13
q12 q22 q23
q13 q23 q33




 , (10.3)

and the observation errors would be
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. (10.4)

10.1.2 Constraints to ensure identifiability

If Z, a, and Q in Equation 10.1 are not constrained, then the DFA model above
is unidentifiable (Harvey, 1989, sec 4.4). Harvey (1989, section 8.5.1) suggests the
following parameter constraints to make the model identifiable:

• in the first m − 1 rows of Z, the z-value in the j-th column and i-th row is set to
zero if j > i;

• a is constrained so that the first m values are set to zero; and
• Q is set equal to the identity matrix (Im).

Zuur et al. (2003), however, found that with Harvey’s second constraint, the EM
algorithm is not particularly robust, and it takes a long time to converge. Zuur et al.
found that the EM estimates are much better behaved if you instead constrain each
of the time series in x to have a mean of zero across t = 1 to T . To do so, they
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replaced the estimates of the hidden states, xT
t , coming out of the Kalman smoother2

with xT
t − x̄ for t = 1 to T , where x̄ is the mean of xt across t. With this approach,

you estimate all of the a elements, which represent the average level of yt relative to
Z(xt − x̄). We found that demeaning the xT

t in this way can cause the EM algorithm
to have errors (decline in log-likelihood). Instead, we demean our data, and fix all
elements of a to zero.

Using these constraints, the DFA model in Equation 10.2 becomes
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The process errors of the hidden trends in Equation 10.3 would then become
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but the observation errors in Equation 10.4 would stay the same, such that
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To complete our model, we still need the final form for the initial conditions of the
state. Following Zuur et al. (2003), we set the initial state vector (x0) to have zero
mean and a diagonal variance-covariance matrix with large variances, such that

x0 ∼ MVN






0
0
0


 ,




5 0 0
0 5 0
0 0 5




 . (10.8)

2 This is the estimate of the states conditioned on all the data, t = 1 to t = T .
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10.2 The data

We will analyze some of the Lake Washington plankton data included in the {MARSS}
package. This dataset includes 33 years of monthly counts for 13 plankton species
along with data on water temperature, total phosphorous (TP), and pH. First, we
load the data and then extract a subset of columns corresponding to the phytoplank-
ton species only. For the purpose of speeding up model fitting times and to limit our
analysis to years with no missing covariate data, we will only examine 10 years of
data (1980-1989).

data(lakeWAplankton)
# we want lakeWAplanktonTrans, which has been log-transformed
# and the 0s replaced with NAs
plankdat <- lakeWAplanktonTrans
years <- plankdat[, "Year"] >= 1980 & plankdat[, "Year"] < 1990
phytos <- c(
"Cryptomonas", "Diatoms", "Greens",
"Unicells", "Other.algae"

)
dat.spp.1980 <- plankdat[years, phytos]

Next, we transpose the data and calculate the number of time series and their length.

# transpose data so time goes across columns
dat.spp.1980 <- t(dat.spp.1980)
N.ts <- nrow(dat.spp.1980)
TT <- ncol(dat.spp.1980)

It is normal in this type of analysis to standardize each time series by first sub-
tracting its mean and then dividing by its standard deviation (i.e., create a z-score y∗

t
with mean = 0 and standard deviation = 1), such that

y∗
t = Σ−1(yt − ȳ),

Σ is a diagonal matrix with the standard deviations of each time series along the
diagonal, and ȳ is a vector of the means. In R, this can be done as follows

Sigma <- sqrt(apply(dat.spp.1980, 1, var, na.rm = TRUE))
y.bar <- apply(dat.spp.1980, 1, mean, na.rm = TRUE)
dat.z <- (dat.spp.1980 - y.bar) * (1 / Sigma)
rownames(dat.z) <- rownames(dat.spp.1980)

MARSS also has a helper function to z-score data:

dat.z <- zscore(dat.spp.1980)

Figure 10.1 shows time series of Lake Washington phytoplankton data following
z-score transformation.
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Fig. 10.1. Time series of Lake Washington phytoplankton data following z-score transforma-
tion.

10.3 Setting up the model for MARSS()

As we have seen in other cases, setting up the model structure for MARSS re-
quires that the parameter matrices have a one-to-one correspondence to the model
as you would write it on paper (i.e., Equations 10.5 through 10.8). If a parameter
matrix has a combination of fixed and estimated values, then you specify that us-
ing matrix(list(), nrow, ncol). This is a matrix of class list and allows you
to combine numeric and character values in a single matrix. MARSS recognizes the
numeric values as fixed values and the character values as estimated values.

This is how we set up Z for MARSS, assuming a model with 5 observed time
series and 3 hidden trends:

Z.vals <- list(
"z11", 0, 0,
"z21", "z22", 0,
"z31", "z32", "z33",
"z41", "z42", "z43",
"z51", "z52", "z53"
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)
Z <- matrix(Z.vals, nrow = N.ts, ncol = 3, byrow = TRUE)

When specifying the list values, spacing and carriage returns were added to help
show the correspondence with the Z matrix in Equation 10.3. If you print Z (at the R
command line), you will see that it is a matrix with character values (the estimated
elements) and numeric values (the fixed 0’s).

print(Z)

[,1] [,2] [,3]
[1,] "z11" 0 0
[2,] "z21" "z22" 0
[3,] "z31" "z32" "z33"
[4,] "z41" "z42" "z43"
[5,] "z51" "z52" "z53"

Notice that the 0’s do not have quotes around them. If they did, it would mean the
"0" is a character value and would be interpreted as the name of a parameter to be
estimated rather than a fixed numeric value.

The Q and B matrices are both set equal to the identity matrix using diag().

Q <- B <- diag(1, 3)

For our first analysis, we will assume that each time series of phytoplankton has
a different observation variance, but that there is no covariance among time series.
Thus, R should be a diagonal matrix that looks like:




r11 0 0 0 0
0 r22 0 0 0
0 0 r33 0 0
0 0 0 r44 0
0 0 0 0 r55




and each of the ri,i elements is a different parameter to be estimated. We can also
specify this R structure using a list matrix as follows:

R.vals <- list(
"r11", 0, 0, 0, 0,
0, "r22", 0, 0, 0,
0, 0, "r33", 0, 0,
0, 0, 0, "r44", 0,
0, 0, 0, 0, "r55"

)
R <- matrix(R.vals, nrow = N.ts, ncol = N.ts, byrow = TRUE)

You can print R at the R command line to see what it looks like:

print(R)
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[,1] [,2] [,3] [,4] [,5]
[1,] "r11" 0 0 0 0
[2,] 0 "r22" 0 0 0
[3,] 0 0 "r33" 0 0
[4,] 0 0 0 "r44" 0
[5,] 0 0 0 0 "r55"

This form of variance-covariance matrix is commonly used, and therefore {MARSS}
has a built-in shorthand for this structure.

R <- "diagonal and unequal"

Type ?MARSS at the R command line to see a list of the shorthand options for each
parameter vector/matrix.

The parameter vectors π (termed x0 in MARSS), a and u are each set to be a
column vector of zeros. Any of the following can be used:

x0 <- U <- matrix(0, nrow = 3, ncol = 1)
A <- matrix(0, nrow = 6, ncol = 1)
x0 <- U <- A <- "zero"

The Λ matrix (termed V0 in MARSS) is a diagonal matrix with 5’s along the
diagonal:

V0 <- diag(5, 3)

Finally, we make a list of the model parameters to pass to the MARSS() function
and set the control list:

dfa.model <- list(
Z = Z, A = "zero", R = R, B = B, U = U,
Q = Q, x0 = x0, V0 = V0

)
cntl.list <- list(maxit = 50)

For the examples in this chapter, we have set the maximum iterations to 50 to speed
up model fitting. Note, however, that the parameter estimates will not have converged
to their maximum likelihood values, which would likely take 100s, if not 1000+,
iterations.

10.3.1 Fitting the model

We can now pass the DFA model list to MARSS() to estimate the Z matrix and un-
derlying hidden states (x). The output is not shown because it is voluminous, but the
model fits are plotted in Figure 10.2. The warnings regarding non-convergence are
due to setting maxit to 50.

kemz.3 <- MARSS(dat.z, model = dfa.model, control = cntl.list)
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Warning! Reached maxit before parameters converged. Maxit was 50.
neither abstol nor log-log convergence tests were passed.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
WARNING: maxit reached at 50 iter before convergence.
Neither abstol nor log-log convergence test were passed.
The likelihood and params are not at the MLE values.
Try setting control$maxit higher.
Log-likelihood: -782.202
AIC: 1598.404 AICc: 1599.463

Estimate
Z.z11 0.4163
Z.z21 0.5364
Z.z31 0.2780
Z.z41 0.5179
Z.z51 0.1611
Z.z22 0.6757
Z.z32 -0.2381
Z.z42 -0.2381
Z.z52 -0.2230
Z.z33 0.2305
Z.z43 -0.1225
Z.z53 0.3887
R.(Cryptomonas,Cryptomonas) 0.6705
R.(Diatoms,Diatoms) 0.0882
R.(Greens,Greens) 0.7201
R.(Unicells,Unicells) 0.1865
R.(Other.algae,Other.algae) 0.5441
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

Convergence warnings
10 warnings. First 10 shown. Type cat(object$errors) to see the full list.
Warning: the Z.z51 parameter value has not converged.
Warning: the Z.z32 parameter value has not converged.
Warning: the Z.z52 parameter value has not converged.
Warning: the Z.z33 parameter value has not converged.
Warning: the Z.z43 parameter value has not converged.
Warning: the R.(Diatoms,Diatoms) parameter value has not converged.
Warning: the R.(Greens,Greens) parameter value has not converged.
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Warning: the R.(Other.algae,Other.algae) parameter value has not converged.
Warning: the logLik parameter value has not converged.
Type MARSSinfo("convergence") for more info on this warning.
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Fig. 10.2. Plots of Lake Washington phytoplankton data with model fits (dark lines) from a
model with 3 trends and a diagonal and unequal variance-covariance matrix for the observation
errors. This model was run to convergence so is different than that shown in the text which
uses maxit=50.

10.4 Using model selection to determine the number of trends

Following Zuur et al. (2003), we use model selection criteria (specifically AICc) to
determine the number of underlying trends that have the highest data support. Our
first model had three underlying trends (m = 3). Let’s compare this to a model with
two underlying trends. The forms for parameter matrix R and vector a will stay the
same but we need to change the other parameter vectors and matrices because m is
different.
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After showing you the matrix math behind a DFA model, we will now use the
form argument for a MARSS call to specify that we want to fit a DFA model. Type
?MARSS.dfa to learn about the MARSS() call with form="dfa". This will set up the
Z matrix and the other parameters for you. Specify how many trends you want by
passing in model=list(m=x). You can also pass in different forms for the R matrix
in the usual way.

Here is how to fit two trends using form="dfa":

model.list <- list(m = 2, R = "diagonal and unequal")
kemz.2 <- MARSS(dat.spp.1980,
model = model.list,
z.score = TRUE, form = "dfa", control = cntl.list

)

if (!saved.res) {
model.list <- list(m = 2, R = "diagonal and unequal")
kemz.2 <- MARSS(dat.spp.1980,

model = model.list,
z.score = TRUE, form = "dfa", control = big.maxit.cntl.list

)
}

and compare its AICc value to that from the 3-trend model.

print(cbind(
model = c("3 trends", "2 trends"),
AICc = round(c(kemz.3$AICc, kemz.2$AICc))

),
quote = FALSE
)

model AICc
[1,] 3 trends 1589
[2,] 2 trends 1608

It looks like a model with 3 trends has much more support from the data because its
AICc value is more than 10 units less than that for the 2-trend model.

10.4.1 Comparing many model structures

Now let’s examine a larger suite of possible models. We will test from one to four
underlying trends (m = 1 to 4) and four different structures for the R matrix:

1. same variances & no covariance ("diagonal and equal");
2. different variances & no covariance ("diagonal and unequal");
3. same variances & same covariance ("equalvarcov"); and
4. different variances & covariances ("unconstrained").
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The following code builds our model matrices; you could also write out each matrix
as we did in the first example, but this allows us to build and run all of the models
together. NOTE: the following piece of code will take a very long time to run!

# set new control params
cntl.list <- list(minit = 200, maxit = 5000, allow.degen = FALSE)
# set up forms of R matrices
levels.R <- c(
"diagonal and equal",
"diagonal and unequal",
"equalvarcov",
"unconstrained"

)
model.data <- data.frame(stringsAsFactors = FALSE)
# fit lots of models & store results
# NOTE: this will take a long time to run!
for (R in levels.R) {
for (m in 1:(N.ts - 1)) {

dfa.model <- list(A = "zero", R = R, m = m)
kemz <- MARSS(dat.z,
model = dfa.model, control = cntl.list,
form = "dfa", z.score = TRUE

)
model.data <- rbind(
model.data,
data.frame(
R = R,
m = m,
logLik = kemz$logLik,
K = kemz$num.params,
AICc = kemz$AICc,
stringsAsFactors = FALSE

)
)
assign(paste("kemz", m, R, sep = "."), kemz)

} # end m loop
} # end R loop

Model selection results are shown in Table 10.1. The models with lowest AICc
had 2 or 3 trends and an unconstrained R matrix. It also appears that, in general, mod-
els with an unconstrained R matrix fit the data much better than those models with
less complex structures for the observation errors (i.e., models with unconstrained
forms for R had nearly all of the AICc weight).
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Table 10.1. Model selection results.

R m logLik delta.AICc Ak.wt Ak.wt.cum
unconstrained 3 -762.5 0.0 0.39 0.39
unconstrained 2 -765.9 0.1 0.37 0.76
unconstrained 4 -761.5 2.3 0.12 0.89
unconstrained 1 -772.4 4.4 0.04 0.93
diagonal and unequal 4 -774.2 5.9 0.02 0.95
equalvarcov 2 -782.7 6.1 0.02 0.97
diagonal and unequal 3 -777.1 7.5 0.01 0.98
diagonal and equal 4 -779.3 7.7 0.01 0.99
diagonal and equal 3 -781.8 8.4 0.01 0.99
equalvarcov 4 -779.0 9.1 0.00 1.00
equalvarcov 3 -781.4 9.9 0.00 1.00
diagonal and unequal 2 -786.6 20.2 0.00 1.00
equalvarcov 1 -799.9 32.3 0.00 1.00
diagonal and equal 2 -798.4 35.4 0.00 1.00
diagonal and unequal 1 -798.4 35.4 0.00 1.00
diagonal and equal 1 -813.5 57.4 0.00 1.00

10.5 Using varimax rotation to determine the loadings and trends

As Harvey (1989, p. 450, sec. 8.5.1) discusses, there are multiple equivalent solutions
to the dynamic factor loadings. We arbitrarily constrained Z in such a way to choose
only one of these solutions, but fortunately the different solutions are equivalent,
and they can be related to each other by a rotation matrix H. Let H be any m × m
non-singular matrix. The following are then equivalent solutions:

yt = Zxt +a+vt

xt = xt−1 +wt
(10.9)

and
yt = ZH−1x†

t +a+vt

x†
t = x†

t−1 +w†
t

x†
t = Hxt ;w†

t = Hwt

(10.10)

x† are the rotated trends.
There are many ways of doing factor rotations, but a common approach is the

varimax rotation which seeks a rotation matrix H that creates the largest difference
between loadings. For example, let’s say there are three trends in our model. In our
estimated Z matrix, let’s say row 3 is (0.2,0.2,0.2). That would mean that data series
3 is equally described by trends 1, 2, and 3. If instead row 3 was (0.8,0.1,0.1), this
would make interpretation easier because we could say that data time series 3 was
mostly described by trend 1. The varimax rotation finds the H matrix that makes the
Z rows more like (0.8,0.1,0.1) and less like (0.2,0.2,0.2).
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The varimax rotation is easy to compute because R has the varimax() function3

that returns H−1. We will illustrate the use of the varimax rotation with the 2-state
model with R unconstrained. We will fit this with a large maxit.

big.maxit.cntl.list <- list(minit = 200, maxit = 5000, allow.degen = FALSE)
model.list <- list(m = 2, R = "unconstrained")
the.fit <- MARSS(dat.z, model = model.list, form = "dfa",

control = big.maxit.cntl.list)

Next, we retrieve the matrix used for varimax rotation.

# get the inverse of the rotation matrix
Z.est <- coef(the.fit, type = "matrix")$Z
H.inv <- 1
if (ncol(Z.est) > 1)
H.inv <- varimax(coef(the.fit, type = "matrix")$Z)$rotmat

The rotation matrix that varimax returns H−1 rather than H. If Z has one column,
there is only one Z; there is only a rotation matrix if Z has more than one column.
We use H−1 to rotate the factor loadings and H to rotate the trends as in Equation
10.10.

# rotate factor loadings
Z.rot <- Z.est %*% H.inv
# rotate trends
trends.rot <- solve(H.inv) %*% the.fit$states

The following will get the confidence intervals on the rotated loadings:

# Add CIs to marssMLE object
the.fit <- MARSSparamCIs(the.fit)
# Use coef() to get the upper and lower CIs
Z.low <- coef(the.fit, type = "Z", what = "par.lowCI")
Z.up <- coef(the.fit, type = "Z", what = "par.upCI")
Z.rot.up <- Z.up %*% H.inv
Z.rot.low <- Z.low %*% H.inv
df <- data.frame(
est = as.vector(Z.rot),
conf.up = as.vector(Z.rot.up),
conf.low = as.vector(Z.rot.low)
)

Rotated factor loadings for the model are shown in Figure 10.3. Oddly, some taxa
appear to have no loadings on some trends (e.g., diatoms on trend 1). The reason is
that, merely for display purposes, we chose to plot only those loadings that are greater
than 0.05, and it turns out that after varimax rotation, several loadings are close to 0.

3 in the {stats} package
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Recall that we set Var(wt ) = Q = Im in order to make our DFA model identi-
fiable. Does the variance in the process errors also change following varimax rota-
tion? Interestingly, no. Because H is a non-singular, orthogonal matrix, Var(Hwt ) =
HVar(wt )H⊤ = HImH⊤ = Im.

10.6 Examining model fits

Now that we have done the appropriate factor and trends rotations, we should exam-
ine some plots of model fits. To do so, we will create a function getDFAfits() to
extract the model fits and estimated (1−α)% confidence intervals. Note, the function
residuals(..., type="tT") will also return this information.

fit.b <- getDFAfits(the.fit)

First, it looks like this model captures some of the high frequency variation (i.e.,
seasonality) in the time series (see Figure 10.5). Second, some of the time series had
much better overall fits than others (e.g., compare Cryptomonas and Unicells). Given
the obvious seasonal patterns in the phytoplankton data, it would be worthwhile to
first detrend the data and then repeat the model fitting exercise to see (1) how many
trends would be favored, and (2) the shape of those trends.

10.7 Adding covariates

It is standard to add covariates to the analysis so that one removes known important
drivers. The DFA with covariates is written:

xt = xt−1 +wt where wt ∼ MVN(0,Q)

yt = Zxt +a+Ddt +vt where vt ∼ MVN(0,R)

x0 ∼ MVN(π,Λ)

(10.11)

where the q × 1 vector dt contains the covariate(s) at time t, and the n × q matrix D
contains the effect(s) of the covariate(s) on the observations. Using form="dfa" and
covariates=<covariate name(s)>, we can easily add covariates to our DFA, but this
means that the covariates are input, not data, and there can be no missing values. See
Chapter 13 for how to include covariates with missing values.

The Lake Washington dataset has two environmental covariates that we might
expect to have effects on phytoplankton growth, and hence, abundance: temperature
(Temp) and total phosphorous (TP).

temp <- t(plankdat[years, "Temp", drop = FALSE])
TP <- t(plankdat[years, "TP", drop = FALSE])

Type RShowDoc("Chapter_DFA.R",package="MARSS") at the R command line to open
a file with all the code for this chapter and search for the function name.
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# plot the factor loadings
spp <- rownames(dat.z)
minZ <- 0.05
m <- dim(trends.rot)[1]
ylims <- c(-1.1 * max(abs(Z.rot)), 1.1 * max(abs(Z.rot)))
par(mfrow = c(ceiling(m / 2), 2), mar = c(3, 4, 1.5, 0.5), oma = c(0.4, 1, 1, 1))
for (i in 1:m) {

plot(c(1:N.ts)[abs(Z.rot[, i]) > minZ], as.vector(Z.rot[abs(Z.rot[, i]) > minZ, i]),
type = "h", lwd = 2, xlab = "", ylab = "", xaxt = "n", ylim = ylims, xlim = c(0, N.ts

)
for (j in 1:N.ts) {

if (Z.rot[j, i] > minZ) {
text(j, -0.05, spp[j], srt = 90, adj = 1, cex = 0.9)

}
if (Z.rot[j, i] < -minZ) {

text(j, 0.05, spp[j], srt = 90, adj = 0, cex = 0.9)
}
abline(h = 0, lwd = 1, col = "gray")

} # end j loop
mtext(paste("Factor loadings on trend", i, sep = " "), side = 3, line = .5)

} # end i loop
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Fig. 10.3. Plot of the factor loadings (following varimax rotation) from the 2-state model fit
to the phytoplankton data.
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We will now fit three different models that each add covariate effects (i.e., Temp,
TP, Temp & TP) to our 2-state model with R “unconstrained".

model.list <- list(m = 2, R = "unconstrained")
kemz.temp <- MARSS(dat.spp.1980,
model = model.list, z.score = TRUE,
form = "dfa", control = cntl.list, covariates = temp

)
kemz.TP <- MARSS(dat.spp.1980,
model = model.list, z.score = TRUE,
form = "dfa", control = cntl.list, covariates = TP

)
kemz.both <- MARSS(dat.spp.1980,
model = model.list, z.score = TRUE,
form = "dfa", control = cntl.list, covariates = rbind(temp, TP)

)

Next we can compare whether the addition of the covariates improves the model
fit (effectively less residual error while accounting for the additional parameters).
NOTE: The following results were obtained by letting the EM algorithm run for a
very long time, so your results may differ.

print(cbind(
model = c("no covars", "Temp", "TP", "Temp & TP"),
AICc = round(c(

the.fit$AICc, kemz.temp$AICc, kemz.TP$AICc,
kemz.both$AICc

))
), quote = FALSE)

model AICc
[1,] no covars 1582
[2,] Temp 1518
[3,] TP 1568
[4,] Temp & TP 1522

This suggests that adding temperature or phosphorus to the model, either alone or
in combination with one another, improves overall model fit. If we were interested
in assessing the best model structure that includes covariates, however, we should
examine all combinations of trends and structures for R. The model fits for the
temperature-only model are shown in Fig 10.6 and they appear much better than
the model without any covariates.

10.8 Discussion

We analyzed the phytoplankton data alone. You can try analyzing the zooplankton
data (type head(plankdat) to see the zooplankton names). You can also try ana-
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Fig. 10.6. Plot of the fits from the temperature-only model to the phytoplankton data.

lyzing the phytoplankton and zooplankton together. You can also try different as-
sumptions concerning the structure of R; we just tried unconstrained, diagonal and
unequal, and diagonal and equal. Lastly, notice that there is a seasonal cycle in the
data. We did not explicitly include a seasonal cycle and it would be wise to include
that as a covariate. A random walk can fit a seasonal cycle, but a random walk is not
fundamentally cyclic and thus is not a good way to model a cycle.

DFA models often take an unusually long time to converge. In a real DFA, you
will want to make sure to try different initial starting values (see Chapter 6), and
force the algorithm to run a long time by using minit=x and maxit=(x+c), where
x and c are something like 200 and 5000, respectively. You might also try using
method="BFGS" in the MARSS() call.
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Analyzing noisy animal tracking data

11.1 A simple random walk model of animal movement

A simple random walk model of movement with drift (directional movement) but no
correlation is

x1,t = x1,t−1 +u1 +w1,t , w1,t ∼ N(0,σ2
1) (11.1)

x2,t = x2,t−1 +u2 +w2,t , w2,t ∼ N(0,σ2
2) (11.2)

where x1,t is the location at time t along one axis (here, longitude) and x2,t is for
another, generally orthogonal, axis (here, latitude). The parameter u1 is the rate of
longitudinal movement and u2 is the rate of latitudinal movement. We add errors to
our observations of location:

y1,t = x1,t + v1,t , v1,t ∼ N(0,η2
1) (11.3)

y2,t = x2,t + v2,t , v2,t ∼ N(0,η2
2), (11.4)

This model is comprised of two separate univariate state-space models. Note that
y1 depends only on x1 and y2 depends only on x2. There are no actual interactions
between these two univariate models. However, we can write the model down in
the form of a multivariate model using diagonal variance-covariance matrices and
a diagonal design (Z) matrix. Because the variance-covariance matrices and Z are
diagonal, the x1:y1 and x2:y2 processes will be independent as intended. Here are
Equations 11.2 and 11.4 written as a MARSS model (in matrix form):

Type RShowDoc("Chapter_AnimalTracking.R",package="MARSS") at the R command
line to open a file with all the code for the examples in this chapter.
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[

x1,t
x2,t

]
=

[
x1,t−1
x2,t−1

]
+

[
u1
u2

]
+

[
w1,t
w2,t

]
, wt ∼ MVN

(
0,

[
σ2

1 0
0 σ2

2

])
(11.5)

[
y1,t
y2,t

]
=

[
1 0
0 1

][
x1,t
x2,t

]
+

[
v1,t
v2,t

]
, vt ∼ MVN

(
0,

[
η2

1 0
0 η2

2

])
(11.6)

The variance-covariance matrix for wt is a diagonal matrix with unequal variances,
σ2

1 and σ2
2. The variance-covariance matrix for vt is a diagonal matrix with unequal

variances, η2
1 and η2

2. We can write this succinctly as

xt = xt−1 +u+wt , wt ∼ MVN(0,Q) (11.7)
yt = xt +vt , vt ∼ MVN(0,R). (11.8)

11.2 Loggerhead sea turtle tracking data

Loggerhead sea turtles (Caretta caretta) are listed as threatened under the United
States Endangered Species Act of 1973. Over the last ten years, a number of state
and local agencies have been deploying ARGOS tags on loggerhead turtles on the
east coast of the United States. We have data on eight individuals over that period.
In this chapter, we use some turtle data from the WhaleNet Archive of STOP Data,
however we have corrupted this data severely by adding random errors in order to
create a “bad tag” problem (Figure 11.1), and it would appear that our sea turtles are
becoming land turtles (at least part of the time). We will use the MARSS model to
estimate true positions and speeds from the corrupted data.

Our noisy data are in loggerheadNoisy. They consist of daily readings of loca-
tion (longitude and latitude). If data are missing for a day, then the entries for latitude
and longitude for that day should be NA. However, to make the code in this chap-
ter run quickly, we have interpolated all missing values in the original, uncorrupted,
dataset (loggerhead). The first six lines of the corrupted data are

loggerheadNoisy[1:6, ]

turtle month day year lon lat
1 BigMama 5 28 2001 -81.45989 31.70337
2 BigMama 5 29 2001 -80.88292 32.18865
3 BigMama 5 30 2001 -81.27393 31.67568
4 BigMama 5 31 2001 -81.59317 31.83092
5 BigMama 6 1 2001 -81.35969 32.12685
6 BigMama 6 2 2001 -81.15644 31.89568

The file has data for eight turtles:

turtles <- levels(loggerheadNoisy$turtle)
turtles
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[1] "BigMama" "Bruiser" "Humpty" "Isabelle" "Johanna"
[6] "MaryLee" "TBA" "Yoto"

We will analyze the position data for “Big Mama”. We put the data for “Big Mama”
into matrix dat. dat is transposed because we need time across the columns.

turtlename <- "BigMama"
theTurtle <- which(loggerheadNoisy$turtle == turtlename)
dat <- loggerheadNoisy[theTurtle, 5:6]
dat <- t(dat) # transpose

Figure 11.1 shows the corrupted location data for Big Mama. The figure code
uses the maps R package. You will need to install this R package in order to run the
example code.

# load the map package; you have to install it first
library(maps)
# Read in our noisy data (no missing values)
pdat <- loggerheadNoisy # for plotting
turtlename <- "BigMama"
theTurtle <- which(loggerheadNoisy$turtle == turtlename)
par(mai = c(0, 0, 0, 0), mfrow = c(1, 1))
map("state",
region = c(

"florida", "georgia", "south carolina",
"north carolina", "virginia", "delaware", "new jersey", "maryland"

),
xlim = c(-85, -70)

)
points(pdat$lon[theTurtle], pdat$lat[theTurtle],
col = "blue", pch = 21, cex = 0.7

)

11.3 Estimate locations from the bad tag data

We will begin by specifying the structure of the MARSS model and then use
MARSS() to fit that model to the data. There are two state processes (one for latitude
and the other for longitude), and there is one observation time series for each state
process. As we saw in Equation 11.6, Z is the an identity matrix (a diagonal matrix
with 1s on the diagonal). We could specify this structure as Z.model="identity"
or Z.model=factor(c(1,2)). Although technically, this is unnecessary as this is
the default form for Z.

We will assume that the errors are independent and that there are different drift
rates (u), process variances (σ2) and observation variances for latitude and longitude
(η2).
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Fig. 11.1. Plot of the tag data from the turtle Big Mama. Errors in the location data make it
seem that Big Mama has been moving overland.

Z.model <- "identity"
U.model <- "unequal"
Q.model <- "diagonal and unequal"
R.model <- "diagonal and unequal"

Fit the model to the data:

kem <- MARSS(dat, model = list(
Z = Z.model,
Q = Q.model, R = R.model, U = U.model

))

We can create a plot comparing the estimated and actual locations (Figure 11.2).
The real locations (from which loggerheadNoisy was produced by adding noise)
are in loggerhead and plotted with crosses. There are only a few data points for the
real data because in the real tag data, there are many missing days.

# Code to plot estimated turtle track against observations
# The estimates
pred.lon <- kem$states[1, ]
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pred.lat <- kem$states[2, ]
par(mai = c(0, 0, 0, 0), mfrow = c(1, 1))
library(maps)
pdat <- loggerheadNoisy
turtlename <- "BigMama"
map("state",
region = c(

"florida", "georgia", "south carolina",
"north carolina", "virginia", "delaware", "new jersey", "maryland"

),
xlim = c(-85, -70)

)
points(pdat$lon[theTurtle], pdat$lat[theTurtle],
col = "blue", pch = 21, cex = 0.7

)
lines(pred.lon, pred.lat, col = "red", lwd = 2)
goodturtles <- loggerhead
gooddat <- goodturtles[which(goodturtles$turtle == turtlename), 5:6]
points(gooddat[, 1], gooddat[, 2], col = "black", lwd = 2, pch = 3, cex = 1.1)
legend("bottomright", c(
"bad locations", "estimated true location",
"good location data"

),
pch = c(1, -1, 3), lty = c(-1, 1, -1),
col = c("blue", "red", "black"), bty = FALSE
)

11.4 Estimate speeds for each turtle

For each of the eight turtles, estimate the average miles traveled per day. To calculate
the distance traveled by a turtle each day, you use the estimate (from MARSS()) of
the latitude/longitude location of turtle at day t and at day t −1. To calculate distance
traveled in miles from latitude/longitude start and finish locations, we will use the
function GCDF:

GCDF <- function(lon1, lon2, lat1, lat2, degrees = TRUE, units = "miles") {
temp <- ifelse(degrees == FALSE,

acos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1)),
acos(sin(lat1 / 57.2958) * sin(lat2 / 57.2958) +
cos(lat1 / 57.2958) * cos(lat2 / 57.2958) *
cos(lon2 / 57.2958 - lon1 / 57.2958))

)
r <- 3963.0 # (statute miles) , default
if ("units" == "nm") r <- 3437.74677 # (nautical miles)
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bad locations
estimated true location
good location data

Fig. 11.2. Plot of the estimated track of the turtle Big Mama versus the good location data
(before we corrupted it with noise).

if ("units" == "km") r <- 6378.7 # (kilometers)
return(r * temp)

}

We can now compute the distance traveled each day by passing in lat/lon estimates
from day i−1 and day i:

distance[i - 1] <- GCDF(
pred.lon[i - 1], pred.lon[i],
pred.lat[i - 1], pred.lat[i]

)

pred.lon and pred.lat are the predicted longitudes and latitudes from MARSS():
rows one and two in kem$states. To calculate the distances for all days, we put this
through a for loop:

distance <- array(NA, dim = c(dim(dat)[2] - 1, 1))
for (i in 2:dim(dat)[2]) {
distance[i - 1] <- GCDF(

pred.lon[i - 1], pred.lon[i],
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pred.lat[i - 1], pred.lat[i]
)

}

The command mean(distance) gives us the average distance per day. We can
also make a histogram of the distances traveled per day (Figure 11.3).

par(mfrow = c(1, 1))
hist(distance) # make a histogram of distance traveled per day
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Fig. 11.3. Histogram of the miles traveled per day for Big Mama with estimates that account
for measurement error in the data.

We can compare the histogram of daily distances to what we would get if we had
not accounted for measurement error (Figure 11.4). We can also compare the mean
miles per day:

# accounting for observation error
mean(distance)

[1] 15.53858

# assuming the data have no observation error
mean(distance.noerr)
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# Compare to the distance traveled per day if you used the raw data
distance.noerr <- array(NA, dim = c(dim(dat)[2] - 1, 1))
for (i in 2:dim(dat)[2]) {

distance.noerr[i - 1] <- GCDF(dat[1, i - 1], dat[1, i], dat[2, i - 1], dat[2, i])
}
hist(distance.noerr) # make a histogram of distance traveled per day
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Fig. 11.4. Histogram of the miles traveled per day for Big Mama with estimates that account
for measurement error in the data.

[1] 34.80579

You can repeat the analysis done for “Big Mama” for each of the other turtles
and compare the turtle speeds and errors. You will need to replace “Big Mama” in
the code with the name of the other turtle:

levels(loggerheadNoisy$turtle)

[1] "BigMama" "Bruiser" "Humpty" "Isabelle" "Johanna"
[6] "MaryLee" "TBA" "Yoto"
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11.5 Using specialized packages to analyze tag data

If you have real tag data to analyze, you should use a state-space modeling pack-
age that is customized for fitting MARSS models to tracking data. The {MARSS}
package does not have all the bells and whistles that you would want for analyzing
tracking data, particularly tracking data in the marine environment. Examples are the
{Ukfsst} and {kftrack} R packages:

UKFSST https://github.com/positioning/kalmanfilter/wiki/ArticleUkfsst
KFTRACK https://github.com/positioning/kalmanfilter/wiki/Articlekftrack

kftrack is a full-featured toolbox for analyzing tag data with extended Kalman
filtering. It incorporates a number of extensions that are important for analyzing track
data: barriers to movement such as coastlines and non-Gaussian movement distribu-
tions. With kftrack, you can use the real tag data which has big gaps, i.e., days with
no location. MARSS() will struggle with these data because it will estimate states for
all the unseen days; kftrack only fits to the seen days.
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Detection of outliers and structural breaks

12.1 Background

This chapter is based on a short example shown on pages 147-148 in Koopman et al.
(1999) using a 100-year record of river flow on the Nile River. The methods are based
on Harvey et al. (1998) which is in turn based on techniques in Harvey and Koopman
(1992) and Koopman (1993). The Nile dataset is included in R . Figure 12.1 shows
the data.

12.2 Different models for the Nile flow levels

We begin by fitting different flow models to the data and compare these models with
AIC. After that, we will use the model residuals to look for outliers and structural
breaks.

12.2.1 Flat level model

We will start by modeling these data as a simple average river flow with variability
around this level.

yt = a+ vt where vt ∼ N(0,r) (12.1)

where yt is the river flow volume at year t and x is some constant average flow level
(notice it has no t subscript).

To fit this model with MARSS, we will explicitly show all the MARSS parame-
ters.

Type RShowDoc("Chapter_StructuralBreaks.R",package="MARSS") at the R com-
mand line to open a file with all the code for the examples in this chapter.
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# load the datasets package
library(datasets)
data(Nile) # load the data
plot(Nile, ylab = "Flow volume", xlab = "")
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Fig. 12.1. The Nile River flow volume 1871 to 1970 (included dataset in R ).

xt = 1× xt−1 +0+wt where wt ∼ N(0,0)

yt = 0× xt +a+ vt where vt ∼ N(0,r)

x0 = 0
(12.2)

MARSS includes the state process xt but we are setting Z to zero so that does not
appear in our observation model. We need to fix all the state parameters to zero so
that the algorithm doesn’t “chase its tail” trying to fit xt to the data.

An equivalent way to write this model is to use xt as the average flow level and
make it be a constant level by setting q = 0. The average flow appears as the x0
parameter. Written as a MARSS model, the model is:

xt = 1× xt−1 +0+wt where wt ∼ N(0,0)

yt = 1× xt +0+ vt where vt ∼ N(0,r)

x0 = a
(12.3)
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We will use this latter format since we will be building on this form. The model is
specified as follows:

mod.nile.0 <- list(
Z = matrix(1), A = matrix(0), R = matrix("r"),
B = matrix(1), U = matrix(0), Q = matrix(0),
x0 = matrix("a")

)

We then fit the model:

# The data is in a ts format, and we need a matrix
dat <- t(as.matrix(Nile))
rownames(dat) <- "Nile"
kem.0 <- MARSS(dat, model = mod.nile.0, silent = TRUE)
summary(kem.0)

m: 1 state process(es) named X.Nile
n: 1 observation time series named Nile

term estimate
1 R.r 28351.57
2 x0.a 919.35

12.2.2 Linear trend in flow model

Figure 12.2 shows the fit for the flat average river flow model. Looking at the data,
we might expect that a declining average river flow would be better. In MARSS form,
that model would be:

xt = 1× xt−1 +u+wt where wt ∼ N(0,0)

yt = 1× xt +0+ vt where vt ∼ N(0,r)

x0 = a
(12.4)

where u is now the average per-year decline in river flow volume. The model is
specified as follows:

mod.nile.1 <- list(
Z = matrix(1), A = matrix(0), R = matrix("r"),
B = matrix(1), U = matrix("u"), Q = matrix(0),
x0 = matrix("a")

)

We then fit the model:

kem.1 <- MARSS(dat, model = mod.nile.1, silent = TRUE)
summary(kem.1)
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m: 1 state process(es) named X.Nile
n: 1 observation time series named Nile

term estimate
1 R.r 22213.595453
2 U.u -2.692106
3 x0.a 1054.935067

Figure 12.2 shows the fits for the two models with deterministic models (flat and
declining) for mean river flow along with their AICc values (smaller AICc is better).
The AICc for the model with a declining river flow is lower by over 20 (which is a
lot).

12.2.3 Stochastic level model

Looking at the flow levels, we might suspect that a model that allows the average
flow to change would model the data better and we might suspect that there have
been sudden, and anomalous, changes in the river flow level. We will now model the
average river flow at year t as a random walk, specifically an autoregressive process
which means that average river flow in year t is a function of the average river flow
in year t −1.

xt = xt−1 +wt where wt ∼ N(0,q)

yt = xt + vt where vt ∼ N(0,r)

x0 = π
(12.5)

As before, yt is the river flow volume at year t. With all the MARSS parameters
shown, the model is:

xt = 1× xt−1 +0+wt where wt ∼ N(0,q)

yt = 1× xt +0+ vt where vt ∼ N(0,r)

x0 = π
(12.6)

Thus, Z = 1, a = 0, R = r, B = 1, u = 0, Q = q, and x0 = π. The model is then
specified as:

mod.nile.2 <- list(
Z = matrix(1), A = matrix(0), R = matrix("r"),
B = matrix(1), U = matrix(0), Q = matrix("q"),
x0 = matrix("pi")

)

We could also use the text shortcuts to specify the model. Because R and Q are
1 × 1 matrices, “unconstrained”, “diagonal and unequal“, “diagonal and equal” and
“equalvarcov” will all lead to a 1×1 matrix with one estimated element.

To fit the model, we use the BFGS algorithm to polish off the estimates, since
it will get the maximum faster than the default EM algorithm as long as we start it
close to the maximum.
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kem.2em <- MARSS(dat, model = mod.nile.2, silent = TRUE)
kem.2 <- MARSS(dat,
model = mod.nile.2,
inits = kem.2em$par, method = "BFGS", silent = TRUE

)
summary(kem.2)

m: 1 state process(es) named X.Nile
n: 1 observation time series named Nile

term estimate
1 R.r 15336.530
2 Q.q 1218.137
3 x0.pi 1111.591

This is the same model fit in Koopman et al. (1999, p. 148) except that we estimate
x1 as parameter rather than specifying x1 via a diffuse prior. As a result, the log-
likelihood value and R and Q are a little different than in Koopman et al. (1999).

12.3 Observation and state residuals

Figure 12.2 shows the fits to the data. From these model fits, auxiliary residuals
can be computed which contain information about whether the data and models fits
at time t differ more than you would expect given the model and the model fits at
time t − 1. In this section, we follow the example shown on page 147-148 in Koop-
man et al. (1999) and use these residuals to look for outliers and sudden flow level
changes. Using auxiliary residuals this way follows mainly from Harvey and Koop-
man (1992), but see also Koopman (1993, section 3), de Jong and Penzer (1998) and
Penzer (2001) for discussions of using auxiliary residuals for detection of outliers
and structural breaks.

The MARSS() function will output the expected values of xt conditioned on the
maximum-likelihood values of q, r, and x1 and on the data (y from t = 1 to T ).
In time-series literature, these are called the smoothed state estimates and they are
output by the Kalman filter-smoother. We will denote these smoothed estimates xT

t
(and are xtT in the MARSS output). The time value in the superscript indicates the
last data time point on which the estimate was conditioned (in this case, the state
estimate is conditioned on data from t = 1 to t = T ). From these, we can compute
the model predicted value of yt , denoted or ŷT

t . This is the predicted value of yt
conditioned on xT

t .

xT
t = E[Xt |θ̂,yT

1 ]

ŷT
t = E[Yt |θ̂,xT

t ]

= xT
t + E[wt |θ̂,yT

1 ] = xT
t

(12.7)
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Fig. 12.2. The Nile River flow volume with the model estimated flow rates (solid lines). The
bottom model is a stochastic level model, and the 2 standard deviations for the level are also
shown. The other two models are deterministic level models so the state is not stochastic and
does not have a standard deviation.

where θ̂ are the maximum-likelihood estimates of the parameters. The ŷT
t equation

comes directly from equation 12.5. This expectation is not conditioned on the data
yT

1 , directly. It is conditioned on xT
t , which is conditioned on yT

1 .

12.3.1 Using observation residuals to detect outliers

The standardized smoothed observation (or model) residuals1 are the difference be-
tween the data at time t and the model fit at time t conditioned on all the data and

1 also called smoothations in the literature to distinguish them from innovations, which are
yt − E[Yt |xt−1

t ]. Notice that for innovations the expectation is conditioned on the data up
to time t −1 while for smoothations, we condition on all the data.
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then standardized by the observation variance:

v̂t = yt − ŷT
t

et =
1√

var(v̂t)
v̂t

(12.8)

These residuals should have (asymptotically) a t-distribution (Kohn and Ansley,
1989, section 3) and by looking at the residuals, we can identify potential out-
lier data points–or more accurately, we can identify data points that do not fit the
model (Equation 12.5). The call MARSSresiduals(..., type="tT") will com-
pute the smoothation (or auxilliary) residuals for a marssMLE object (output by a
MARSS call). MARSSresiduals() returns two types of standardized residuals (also
called auxiliary residuals): Cholesky standardized residuals and marginal standard-
ized residuals. We are using the latter here. The residuals are returned as a n+m×T
matrix. The first n rows are the estimated vt standardized observation residuals and
the next m rows are the estimated wt standardized state residuals (discussed below).
residuals(..., type="tT") will also return the smoothations but in a data frame.
Here we use MARSSresiduals() which return them in a list of matrices.

resids.0 <- MARSSresiduals(kem.0, type = "tT")$mar.residuals
resids.1 <- MARSSresiduals(kem.1, type = "tT")$mar.residuals
resids.2 <- MARSSresiduals(kem.2, type = "tT")$mar.residuals

Figure 12.3 shows the observation residuals for the three models developed
above. We immediately see that model 0 (flat level) and model 1 (linear declining
level) have problems because the residuals are all positive for the first part of the
time series and then all negative. The residuals should not be temporally correlated
like that. Model 2 with a stochastic level shows well-behaving residuals with low
temporal correlation between t and t − 1. Looking at the residuals for model 2, we
see that there are a number of years with flow levels that appear to be outliers (are
beyond the dashed level lines).

12.3.2 Detecting sudden level changes

The standardized smoothed state residuals ( ft below) are the difference between the
estimated state at time t and the estimated state at time t − 1 conditioned on all the
data and then standardized by the standard deviation:

ŵt = xT
t − xT

t−1

ft =
1√

var(ŵt)
ŵt

(12.9)

These state residuals do not show simple changes in the average level; xt is clearly
changing in Figure 12.2, bottom panel. Instead we are looking for “breaks" or sud-
den changes in the level. The bottom panel of Figure 12.4 shows the standardized
state residuals ( ft ). This shows, as we can see by eye, the average flow level in the
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Fig. 12.3. The marginal standardized observation residuals from models 0, 1, and 2. These
residuals are the standardized v̂t . The dashed lines are the 95% CIs for a t-distribution.

Nile appears to have suddenly changed around the turn of the century when the first
Aswan dam was built. The top panel shows the standardized observation residuals
for comparison.

12.3.3 Detecting changes in the drift parameter in a random walk model

The model of a random walk with a fixed u drift term is:

yt = xt + vt where vt ∼ N(0,r)

xt = xt−1 +u+wt where wt ∼ N(0,q)

x0 = π
(12.10)

Same as we did for the level, we can model the drift as a random walk and explore
whether ut has changed over time or whether it has experienced sudden breaks. The
stochastic level and trend model is
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Fig. 12.4. Top panel, the marginal standardized observation residuals. Bottom panel, the stan-
dardized state residuals. This replicates Figure 12 in Koopman et al. (1999).

yt = xt + vtwhere vt ∼ N(0,r)

xt = xt−1 +ut−1 +wt where wt ∼ N(0,q)

ut = ut−1 + zt where zt ∼ N(0, p)

x0 = πx and u0 = πu

(12.11)

Write the model in MARSS form:

yt =
[
1 0
][xt

ut

]
+ vt

[
xt
ut

]
=

[
1 1
0 1

][
xt−1
ut−1

]
+

[
wt
zt

]
where

[
vt
zt

]
∼ MVN

(
0,

[
q 0
0 p

]) (12.12)

The model is then:
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yt = Zx+a+ vt

xt = Bxt−1 +u+wt

Z =
[
1 0
]

a =
[
0
]

R =
[
r
]

B =

[
1 1
0 1

]
u =

[
0
0

]
Q =

[
q 0
0 p

]
x0 =

[
πx
πu

]
(12.13)

We then write the model list as:

mod.nile.3 <- list(
Z = matrix(c(1, 0), 1, 2), A = matrix(0), R = matrix("r"),
B = matrix(c(1, 0, 1, 1), 2, 2), U = matrix(0, 2, 1),
Q = matrix(list("q", 0, 0, "p"), 2, 2),
x0 = matrix(c("x", "u"), 2, 1)

)

This model takes a long time to fit with the EM algorithm2. We could run the EM
algorithm a long time, but there is a quicker trick in this case. We will run the EM
algorithm for a few iterations and stop before convergence. Then we will use the fit
from the EM algorithm as the initial condition for the faster BFGS algorithm for the
final approach to the maximum-likelihood:

model <- mod.nile.3
kem.3 <- MARSS(dat,
model = model, inits = list(x0 = matrix(c(1000, -4), 2, 1)),
control = list(maxit = 20), silent = TRUE

)
kem.3 <- MARSS(dat,
model = model, inits = kem.3,
method = "BFGS", silent = TRUE

)
summary(kem.3)

m: 2 state process(es) named X1 X2
n: 1 observation time series named Nile

term estimate
1 R.r 1.611549e+04
2 Q.q 8.427672e+02
3 Q.p 3.693550e-07
4 x0.x 1.118521e+03
5 x0.u -3.108126e+00

2 Normally this type of model is fit with a fixed diffuse initial condition which makes the
fitting much faster. See the chapter on Structural time series models
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The Nile data is not a good example since the variance for the slope is close to
zero so the residual line is just a flat 0 (see value for Q.p). Let’s run the same model
on the WWWusage dataset (Figure 12.5).
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Fig. 12.5. The WWWusage data set.

dat <- as.vector(WWWusage)
kem.3 <- MARSS(dat,
model = model, inits = list(x0 = matrix(0, 2, 1)),
control = list(maxit = 20), silent = TRUE

)
kem.3 <- MARSS(dat,
model = model, inits = kem.3,
method = "BFGS", silent = TRUE

)
summary(kem.3)

m: 2 state process(es) named X1 X2
n: 1 observation time series named Y1

term estimate
1 R.r 2.140157e-19
2 Q.q 2.701146e-20
3 Q.p 1.273883e+01
4 x0.x 9.045769e+01
5 x0.u -2.457692e+00
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Figure 12.6 shows the standardized residuals for the u, which is the 2nd state in
x. There appears to be unusually large changes in the trend around year 25. The other
changes in the trend are consistent with a random walk; i.e., the trend changes but
only the rapid change near year 25 is inconsistent with the estimated trend random
walk.
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Fig. 12.6. The marginal standardized residuals for slope changes for the WWWusage model.

12.4 Discussion

This chapter shows the basic strategy for doing shock detection sensu Harvey et
al. using standardized residuals. This was illustrated with stochastic level and trend
models. Stochastic level and trend models are also called Structural Time Series
models. You can find more examples of these models in Chapter 19.
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Incorporating covariates into MARSS models

13.1 Covariates as inputs

A MARSS model with covariate effects in both the process and observation compo-
nents is written as:

xt = Btxt−1 +ut +Ctct +wt , where wt ∼ MVN(0,Qt)

yt = Ztxt +at +Dtdt +vt , where vt ∼ MVN(0,Rt)
(13.1)

where ct is the p×1 vector of covariates (e.g., temperature, rainfall) which affect the
states and dt is a q×1 vector of covariates (potentially the same as ct ), which affect
the observations. Ct is an m× p matrix of coefficients relating the effects of ct to the
m × 1 state vector xt , and Dt is an n × q matrix of coefficients relating the effects of
dt to the n×1 observation vector yt .

With the MARSS() function, one can fit this model by passing in model$c and/or
model$d in the MARSS() call as a p × T or q × T matrix, respectively. The form for
Ct and Dt is similarly specified by passing in model$C and/or model$D. Because C
and D are matrices, they must be passed in as an 3-dimensional array with the 3rd
dimension equal to the number of time steps if they are time-varying. If they are
time-constant, then they can be specified as 2-dimensional matrices.

13.2 Examples using plankton data

Here we show some examples using the Lake Washington plankton data set and co-
variates in that dataset. We use the 10 years of data from 1965-1974 (Figure 13.1),

Type RShowDoc("Chapter_Covariates.R",package="MARSS") at the R command line
to open a file with all the code for the examples in this chapter.
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a decade with particularly high green and blue-green algae levels. We use the trans-
formed plankton dataset which has 0s replaced with NAs. Below, we set up the data
and z-score the data. The original data were already z-scored, but we changed the
mean when we sub-sampled the years so need to z-score again.

fulldat <- lakeWAplanktonTrans
years <- fulldat[, "Year"] >= 1965 & fulldat[, "Year"] < 1975
dat <- t(fulldat[years, c("Greens", "Bluegreens")])
the.mean <- apply(dat, 1, mean, na.rm = TRUE)
the.sigma <- sqrt(apply(dat, 1, var, na.rm = TRUE))
dat <- (dat - the.mean) * (1 / the.sigma)

Next we set up the covariate data, temperature and total phosphorous. We z-score the
covariates to standardize and remove the mean. MARSS has a function to z-score
data, so we used that from here out.

covariates <- rbind(
Temp = fulldat[years, "Temp"],
TP = fulldat[years, "TP"]

)
# z.score the covariates
covariates <- zscore(covariates)

13.3 Observation-error only model

We can estimate the effect of the covariates using a process-error only model, an
observation-error only model, or a model with both types of error. An observation-
error only model is a multivariate regression, and we will start here so you see the
relationship of MARSS model to more familiar linear regression models.

13.3.1 Multivariate linear regression

In a standard multivariate linear regression, we only have an observation model with
independent errors (i.e., the state process does not appear in the model):

yt = a+Ddt +vt , where vt ∼ MVN(0,R) (13.2)

The elements in a are the intercepts and those in D are the slopes (effects). We have
dropped the t subscript on a and D because these will be modeled as time-constant.
Writing this out for the two plankton and the two covariates we get:

[
yg
ybg

]

t
=

[
a1
a2

]
+

[
βg,temp βg,tp
βbg,temp βbg,tp

][
temp

tp

]

t−1
+

[
v1
v2

]

t
(13.3)

Let’s fit this model with MARSS(). The x part of the model is irrelevant so we
want to fix the parameters in that part of the model. We won’t set B = 0 or Z = 0
since that might cause numerical issues for the Kalman filter. Instead we fix them as
identity matrices and fix x0 = 0 so that xt = 0 for all t.
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Fig. 13.1. Time series of green andblue-green algae abundances in Lake Washington along
with the temperature and total phosphorous covariates.

Q <- U <- x0 <- "zero"
B <- Z <- "identity"
d <- covariates
A <- "zero"
D <- "unconstrained"
y <- dat # to show relationship between dat & the equation
model.list <- list(
B = B, U = U, Q = Q, Z = Z, A = A,
D = D, d = d, x0 = x0

)
kem <- MARSS(y, model = model.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
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Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Algorithm ran 15 (=minit) iterations and convergence was reached.
Log-likelihood: -276.4287
AIC: 562.8573 AICc: 563.1351

Estimate
R.diag 0.706
D.(Greens,Temp) 0.367
D.(Bluegreens,Temp) 0.392
D.(Greens,TP) 0.058
D.(Bluegreens,TP) 0.535
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

We set A="zero" because the data and covariates have been demeaned. Of course,
one can do multiple regression in R using, say, lm(), and that would be much, much
faster. The EM algorithm is over-kill here, but it is shown so that you see how a
standard multivariate linear regression model is written as a MARSS model in matrix
form.

13.3.2 Multivariate linear regression with autocorrelated errors

We can add a twist to the standard multivariate linear regression model, and instead
of having temporally i.i.d. errors in the observation process, we’ll assume autore-
gressive errors. There is still no state process in our model, but we will use the state
part of a MARSS model to model our errors. Mathematically, this can be written as

xt = Bxt−1 +wt , where wt ∼ MVN(0,Q)

yt = Dtdt +xt
(13.4)

Here, the xt are the errors for the observation model; they are modeled as an autore-
gressive process via the x equation. We drop the vt (set R = 0) because the xt in the
y equation are now the observation errors. As usual, we have left the intercepts (a
and u) off since the data and covariates are all demeaned.

Here’s how we fit this model in MARSS:

Q <- "unconstrained"
B <- "diagonal and unequal"
A <- U <- x0 <- "zero"
R <- "diagonal and equal"
d <- covariates
D <- "unconstrained"
y <- dat
model.list <- list(
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B = B, U = U, Q = Q, Z = Z, A = A,
R = R, D = D, d = d, x0 = x0

)
control.list <- list(maxit = 1500)
kem <- MARSS(y, model = model.list, control = control.list)

Success! abstol and log-log tests passed at 79 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 79 iterations.
Log-likelihood: -209.3408
AIC: 438.6816 AICc: 439.7243

Estimate
R.diag 0.0428
B.(X.Greens,X.Greens) 0.2479
B.(X.Bluegreens,X.Bluegreens) 0.9136
Q.(1,1) 0.7639
Q.(2,1) -0.0285
Q.(2,2) 0.1265
D.(Greens,Temp) 0.3777
D.(Bluegreens,Temp) 0.2621
D.(Greens,TP) 0.0459
D.(Bluegreens,TP) 0.0675
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

You can try setting B to identity and MARSS will fit a model with non-mean-
reverting autoregressive errors to the data. It is not done here since it turns out that
that is not a very good model and it takes a long time to fit. If you try it, you’ll see
that Q gets small meaning that the x part is being removed from the model.

13.4 Process-error only model

Now let’s model the data as an autoregressive process observed without error, and
incorporate the covariates into the process model. Note that this is much different
from typical linear regression models. The x part represents our model of the data (in
this case plankton species). How is this different from the autoregressive observation
errors? Well, we are modeling our data as autoregressive so data at t − 1 affects the
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data at t. Population abundances are inherently autoregressive so this model is a bit
closer to the underlying mechanism generating the data. Here is our new process
model for plankton abundance. x is the plankton abundance.

xt = xt−1 +Cct +wt , where wt ∼ MVN(0,Q) (13.5)

We can fit this as follows:

R <- A <- U <- "zero"
B <- Z <- "identity"
Q <- "equalvarcov"
C <- "unconstrained"
x <- dat # to show the relation between dat & the equations
model.list <- list(
B = B, U = U, Q = Q, Z = Z, A = A,
R = R, C = C, c = covariates

)
kem <- MARSS(x, model = model.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Algorithm ran 15 (=minit) iterations and convergence was reached.
Log-likelihood: -285.0732
AIC: 586.1465 AICc: 586.8225

Estimate
Q.diag 0.7269
Q.offdiag -0.0210
x0.X.Greens -0.5189
x0.X.Bluegreens -0.2431
C.(X.Greens,Temp) -0.0434
C.(X.Bluegreens,Temp) 0.0988
C.(X.Greens,TP) -0.0589
C.(X.Bluegreens,TP) 0.0104
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

Now, it looks like temperature has a strong negative effect on algae, which is odd.
Also our log-likelihood dropped a lot. Well, the data do not look at all like a random
walk model (i.e., where B = 1), which we can see from the plot of the data (Figure
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13.1). The data are fluctuating about some mean so let’s switch to a better autoregres-
sive model—a mean-reverting model. To do this, we will allow the diagonal elements
of B to be something other than 1.

model.list$B <- "diagonal and unequal"
kem <- MARSS(dat, model = model.list)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Algorithm ran 15 (=minit) iterations and convergence was reached.
Log-likelihood: -236.6106
AIC: 493.2211 AICc: 494.2638

Estimate
B.(X.Greens,X.Greens) 0.1981
B.(X.Bluegreens,X.Bluegreens) 0.7672
Q.diag 0.4899
Q.offdiag -0.0221
x0.X.Greens -1.2915
x0.X.Bluegreens -0.4179
C.(X.Greens,Temp) 0.2844
C.(X.Bluegreens,Temp) 0.1655
C.(X.Greens,TP) 0.0332
C.(X.Bluegreens,TP) 0.1340
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

Notice that the log-likelihood goes up quite a bit, which means that the mean-
reverting model fits the data much better.

With this model, we are estimating x0
0 (the starting value for the Kalman filter).

If we set model$tinitx=1, to use x0
1 as the starting value instead, we will get a error

message that R diagonals are equal to 0 and we need to fix x0. This is a restriction of
the (default) EM algorithm having to do with the update equation for x0

1. We cannot
use BFGS unless we set Q to be either unconstrained or diagonal because the way Q
is being estimated using the BFGS algorithm to ensure that the matrix stays positive-
definite (via a Cholesky transformation) does not allow any constraints on Q.
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13.5 Both process- & observation-error model

The {MARSS} package is really designed for state-space models where you have
errors (v and w) in both the process and observation models. For example,

xt = Bxt−1 +Ctct +wt , where wt ∼ MVN(0,Q)

yt = xt−1 +vt , where vt ∼ MVN(0,R),
(13.6)

x is the true algae abundances and y is the observation of the x’s.
Let’s say we knew that the observation variance on the algae measurements was

about 0.16 and we wanted to include that known value in the model. To do that, we
can simply add R to the model list from the process-error only model in the last
example.

model.list$R <- diag(0.16, 2)
kem <- MARSS(dat, model = model.list)

Success! abstol and log-log tests passed at 27 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 27 iterations.
Log-likelihood: -241.5301
AIC: 503.0603 AICc: 504.1029

Estimate
B.(X.Greens,X.Greens) 0.31497
B.(X.Bluegreens,X.Bluegreens) 0.76205
Q.diag 0.33374
Q.offdiag -0.00331
x0.X.Greens -0.90020
x0.X.Bluegreens -0.40473
C.(X.Greens,Temp) 0.23448
C.(X.Bluegreens,Temp) 0.16960
C.(X.Greens,TP) 0.02423
C.(X.Bluegreens,TP) 0.14120
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

Note, our estimates of the effect of temperature and total phosphorous are not that
different than what you get from a simple multiple regression (our first example).
This might be because the autoregressive component is small, meaning the estimated
diagonals on the B matrix are small.
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13.6 Including seasonal effects in MARSS models

Time-series data are often collected at intervals with some implicit seasonality. For
example, quarterly earnings for a business, monthly rainfall totals, or hourly air tem-
peratures. In those cases, it is often helpful to extract any recurring seasonal patterns
that might otherwise mask some of the other temporal dynamics we are interested in
examining.

Here we show a few approaches for including seasonal effects using the Lake
Washington plankton data, which were collected monthly. The following examples
will use all five phytoplankton species from Lake Washington. First, let’s set up the
data.

years <- fulldat[, "Year"] >= 1965 & fulldat[, "Year"] < 1975
phytos <- c(
"Diatoms", "Greens", "Bluegreens",
"Unicells", "Other.algae"

)
dat <- t(fulldat[years, phytos])
# z.score data again because we changed the mean when we subsampled
dat <- zscore(dat)
# number of time periods/samples
TT <- ncol(dat)

13.6.1 Seasonal effects as fixed factors

One common approach for estimating seasonal effects is to treat each one as a fixed
factor. This adds an estimated parameter for each season (e.g., 24 hours per day, 4
quarters per year). The plankton data are collected monthly, so we will treat each
month as a fixed factor. To fit a model with fixed month effects, we create a 12 × T
covariate matrix c with one row for each month (Jan, Feb, ...) and one column for
each time point. We put a 1 in the January row for each column corresponding to
a January time point, a 1 in the February row for each column corresponding to a
February time point, and so on. All other values of c equal 0. The following code
will create such a c matrix.

# number of "seasons" (e.g., 12 months per year)
period <- 12
# first "season" (e.g., Jan = 1, July = 7)
per.1st <- 1
# create factors for seasons
c.in <- diag(period)
for (i in 2:(ceiling(TT / period))) {
c.in <- cbind(c.in, diag(period))

}
# trim c.in to correct start & length
c.in <- c.in[, (1:TT) + (per.1st - 1)]
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# better row names
rownames(c.in) <- month.abb

Next we need to set up the form of the C matrix which defines any constraints
we want to set on the month effects. C is a 5 × 12 matrix. Five taxon and 12 month
effects. If we wanted each taxon to have the same month effect, a common month
effect across all taxon, then we have the same value in each C column1:

C <- matrix(month.abb, 5, 12, byrow = TRUE)
C

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"
[2,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"
[3,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"
[4,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"
[5,] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"

[,10] [,11] [,12]
[1,] "Oct" "Nov" "Dec"
[2,] "Oct" "Nov" "Dec"
[3,] "Oct" "Nov" "Dec"
[4,] "Oct" "Nov" "Dec"
[5,] "Oct" "Nov" "Dec"

Notice, that C only has 12 values in it, the 12 common month effects. However,
for this example, we will let each taxon have a different month effect thus allowing
different seasonality for each taxon. For this model, we want each value in C to be
unique:

C <- "unconstrained"

Now C has 5 × 12 = 60 separate effects.
Then we set up the form for the rest of the model parameters. We make the

following assumptions:

# Each taxon has unique density-dependence
B <- "diagonal and unequal"
# Independent process errors
Q <- "diagonal and unequal"
# We have demeaned the data & are fitting a mean-reverting model
# by estimating a diagonal B, thus
U <- "zero"
# Each obs time series is associated with only one process
Z <- "identity"
# The data are demeaned & fluctuate around a mean
A <- "zero"
# Observation errors are independent, but they

1 month.abb is a R constant that gives month abbreviations in text.
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# have similar variance due to similar collection methods
R <- "diagonal and equal"
# No covariate effects in the obs equation
D <- "zero"
d <- "zero"

Now we can set up the model list for MARSS and fit the model (results are not
shown since they are verbose with 60 different month effects).

model.list <- list(
B = B, U = U, Q = Q, Z = Z, A = A, R = R,
C = C, c = c.in, D = D, d = d

)
seas.mod.1 <- MARSS(dat, model = model.list, control = list(maxit = 1500))
# Get the estimated seasonal effects
# rows are taxa, cols are seasonal effects
seas.1 <- coef(seas.mod.1, type = "matrix")$C
rownames(seas.1) <- phytos
colnames(seas.1) <- month.abb

The top panel in Figure 13.2 shows the estimated seasonal effects for this model.
Note that if we had set U="unequal", we would need to set one of the columns of C
to zero because the model would be under-determined (infinite number of solutions).
If we subtracted the mean January abundance off each time series, we could set the
January column in C to 0 and get rid of 5 estimated effects.

13.6.2 Seasonal effects as a polynomial

The fixed factor approach required estimating 60 effects. Another approach is to
model the month effect as a 3rd-order (or higher) polynomial: a + b × m + c × m2 +
d ×m3 where m is the month number. This approach has less flexibility but requires
only 20 estimated parameters (i.e., 4 regression parameters times 5 taxa). To do so,
we create a 4 × T covariate matrix c with the rows corresponding to 1, m, m2, and
m3, and the columns again corresponding to the time points. Here is how to set up
this matrix:

# number of "seasons" (e.g., 12 months per year)
period <- 12
# first "season" (e.g., Jan = 1, July = 7)
per.1st <- 1
# order of polynomial
poly.order <- 3
# create polynomials of months
month.cov <- matrix(1, 1, period)
for (i in 1:poly.order) {
month.cov <- rbind(month.cov, (1:12)^i)

}
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# our c matrix is month.cov replicated once for each year
c.m.poly <- matrix(month.cov, poly.order + 1, TT + period, byrow = FALSE)
# trim c.in to correct start & length
c.m.poly <- c.m.poly[, (1:TT) + (per.1st - 1)]
# Everything else remains the same as in the previous example
model.list <- list(
B = B, U = U, Q = Q, Z = Z, A = A, R = R,
C = C, c = c.m.poly, D = D, d = d

)
seas.mod.2 <- MARSS(dat, model = model.list, control = list(maxit = 1500))

The effect of month m for taxon i is ai + bi × m + ci × m2 + di × m3, where ai, bi, ci
and di are in the i-th row of C. We can now calculate the matrix of seasonal effects
as follows, where each row is a taxon and each column is a month:

C.2 <- coef(seas.mod.2, type = "matrix")$C
seas.2 <- C.2 %*% month.cov
rownames(seas.2) <- phytos
colnames(seas.2) <- month.abb

The middle panel in Figure 13.2 shows the estimated seasonal effects for this poly-
nomial model.

13.6.3 Seasonal effects as a Fourier series

The factor approach required estimating 60 effects, and the 3rd order polynomial
model was an improvement at only 20 parameters. A third option is to use a discrete
Fourier series, which is combination of sine and cosine waves; it would require only
10 parameters. Specifically, the effect of month m on taxon i is ai × cos(2πm/p)+
bi × sin(2πm/p), where p is the period (e.g., 12 months, 4 quarters), and ai and bi
are contained in the i-th row of C.

We begin by defining the 2 × T seasonal covariate matrix c as a combination of
1 cosine and 1 sine wave:

cos.t <- cos(2 * pi * seq(TT) / period)
sin.t <- sin(2 * pi * seq(TT) / period)
c.Four <- rbind(cos.t, sin.t)

Everything else remains the same and we can fit this model as follows:

model.list <- list(
B = B, U = U, Q = Q, Z = Z, A = A, R = R,
C = C, c = c.Four, D = D, d = d

)
seas.mod.3 <- MARSS(dat, model = model.list, control = list(maxit = 1500))

We make our seasonal effect matrix as follows:
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C.3 <- coef(seas.mod.3, type = "matrix")$C
# The time series of net seasonal effects
seas.3 <- C.3 %*% c.Four[, 1:period]
rownames(seas.3) <- phytos
colnames(seas.3) <- month.abb

The bottom panel in Figure 13.2 shows the estimated seasonal effects for this
seasonal-effects model based on a discrete Fourier series.
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Fig. 13.2. Estimated monthly effects for the three approaches to estimating seasonal effects.
Top panel: each month modeled as a separate fixed effect for each taxon (60 parameters);
Middle panel: monthly effects modeled as a 3rd order polynomial (20 parameters); Bottom
panel: monthly effects modeled as a discrete Fourier series (10 parameters).

Rather than rely on our eyes to judge model fits, we should formally assess which
of the three approaches offers the most parsimonious fit to the data. Here is a table
of AICc values for the three models:

data.frame(
Model = c("Fixed", "Cubic", "Fourier"),
AICc = round(c(
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seas.mod.1$AICc,
seas.mod.2$AICc,
seas.mod.3$AICc

), 1),
stringsAsFactors = FALSE

)

Model AICc
1 Fixed 1188.4
2 Cubic 1144.9
3 Fourier 1127.4

The model selection results indicate that the model with monthly seasonal effects
estimated via the discrete Fourier sequence is the most parsimonious of the three
models. Its AICc value is much lower than either the polynomial or fixed-effects
models.

13.7 Model diagnostics

We will examine some basic model diagnostics for these three approaches by look-
ing at plots of the model residuals (innovations) and their autocorrelation functions
(ACFs) for all five taxa using the following code:

for (i in 1:3) {
dev.new()
modn <- paste("seas.mod", i, sep = ".")
for (j in 1:5) {

plot.ts(MARSSresiduals(modn, type = "tt1")$model.residuals[j, ],
ylab = "Residual", main = phytos[j]

)
abline(h = 0, lty = "dashed")
acf(MARSSresiduals(modn, type = "tt1")$model.residuals[j, ],
na.action = na.pass

)
}

}

Figures 13.3 to 13.5 shows these diagnostics for the three models. The model resid-
uals for all taxa and models appear to show significant negative autocorrelation at
lag=1, suggesting that a model with seasonal effects is inadequate to capture all of
the systematic variation in phytoplankton abundance.

13.8 Covariates with missing values or observation error

The specific formulation of Equation 13.1 creates restrictions on the assumptions
regarding the covariate data. You have to assume that your covariate data has no
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Fig. 13.3. Model residuals and their ACF for the model with fixed monthly effects.

error, which is probably not true. You cannot have missing values in your covariate
data, again unlikely. You cannot combine instrument time series; for example, if you
have two temperature recorders with different error rates and biases. Also, what if
you have one noisy temperature recorder in the first part of your time series and then
you switch to a much better recorder in the second half of your time series? All these
problems require pre-analysis massaging of the covariate data, leaving out noisy and
gappy covariate data, and making what can feel like arbitrary choices about which
covariate time series to include.

To circumvent these potential problems and allow more flexibility in how we
incorporate covariate data, one can instead treat the covariates as components of
an auto-regressive process by including them in both the process and observation
models. Beginning with the process equation, we can write

[
x(v)

x(c)

]

t
=

[
B(v) C

0 B(c)

][
x(v)

x(c)

]

t−1
+

[
u(v)

u(c)

]
+wt ,

wt ∼ MVN
(

0,

[
Q(v) 0

0 Q(c)

]) (13.7)
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Fig. 13.4. Model residuals and their ACF for the model with monthly effects modeled as a
3rd-rd order polynomial.

The elements with superscript (v) are for the k variate states and those with su-
perscript (c) are for the q covariate states. The dimension of x(c) is q × 1 and q is
not necessarily equal to p, the number of covariate observation time series in your
dataset. Imagine, for example, that you have two temperature sensors and you are
combining these data. Then you have two covariate observation time series (p = 2)
but only one underlying covariate state time series (q = 1). The matrix C is dimen-
sion k × q, and B(c) and Q(c) are dimension q × q. The dimension2 of x(v) is k × 1,
and B(v) and Q(v) are dimension k × k.

Next, we can write the observation equation in an analogous manner, such that
[

y(v)

y(c)

]

t
=

[
Z(v) D

0 Z(c)

][
x(v)

x(c)

]

t
+

[
a(v)

a(c)

]
+vt ,

vt ∼ MVN
(

0,

[
R(v) 0

0 R(c)

]) (13.8)

2 The dimension of x is always denoted m. If your process model includes only variates, then
k = m, but now your process model includes k variates and q covariate states so m = k +q.
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Fig. 13.5. Model residuals and their ACF for the model with monthly effects estimated using
a Fourier transform.

The dimension of y(c) is p×1, where p is the number of covariate observation time
series in your dataset. The dimension of y(v) is l ×1, where l is the number of variate
observation time series in your dataset. The total dimension of y is l + p. The matrix
D is dimension l × q, Z(c) is dimension p × q, and R(c) are dimension p × p. The
dimension of Z(v) is dimension l × k, and R(v) are dimension l × l.

The D matrix would presumably have a number of all zero rows in it, as would
the C matrix. The covariates that affect the states would often be different than the
covariates that affect the observations. For example, mean annual temperature would
affect population growth rates for many species while having little or no effect on ob-
servability, and turbidity might strongly affect observability in many types of aquatic
surveys but have little affect on population growth rate.

Our MARSS model with covariates now looks on the surface like a regular
MARSS model:

xt = Bxt−1 +u+wt , where wt ∼ MVN(0,Q)

yt = Zxt +a+vt , where vt ∼ MVN(0,R)
(13.9)

with the xt , yt and parameter matrices redefined as in Equations 13.7 and 13.8:
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x =

[
x(v)

x(c)

]
B =

[
B(v) C

0 B(c)

]
u =

[
u(v)

u(c)

]
Q =

[
Q(v) 0

0 Q(c)

]

y =

[
y(v)

y(c)

]
Z =

[
Z(v) D

0 Z(c)

]
a =

[
a(v)

a(c)

]
R =

[
R(v) 0

0 R(c)

] (13.10)

Note Q and R are written as block diagonal matrices, but you could allow covariances
if that made sense. u and a are column vectors here. We can fit the model (Equation
13.9) as usual using the MARSS() function.

The log-likelihood that is returned by MARSS() will include the log-likelihood of
the covariates under the covariate state model. If you want only the the log-likelihood
of the non-covariate data, you will need to subtract off the log-likelihood of the co-
variate model:

x(c)
t = B(c)x(c)

t−1 +u(c) +wt , where wt ∼ MVN(0,Q(c))

y(c)
t = Z(c)x(c)

t +a(c) +vt , where vt ∼ MVN(0,R(c))
(13.11)

An easy way to get this log-likelihood for the covariate data only is use the aug-
mented model (Equation 13.9 with terms defined as in Equation 13.10) but pass in
missing values for the non-covariate data. The following code shows how to do this.

y.aug <- rbind(data, covariates)
fit.aug <- MARSS(y.aug, model = model.aug)

fit.aug is the MLE object that can be passed to MARSSkf(). You need to make a
version of this MLE object with the non-covariate data filled with NAs so that you
can compute the log-likelihood without the covariates. This needs to be done in the
marss element since that is what is used by MARSSkf(). Below is code to do this.

fit.cov <- fit.aug
fit.cov$marss$data[1:dim(data)[1], ] <- NA
extra.LL <- MARSSkf(fit.cov)$logLik

Note that when you fit the augmented model, the estimates of C and B(c) are
affected by the non-covariate data since the model for both the non-covariate and
covariate data are estimated simultaneously and are not independent (since the co-
variate states affect the non-covariates states). If you want the covariate model to be
unaffected by the non-covariate data, you can fit the covariate model separately and
use the estimates for B(c) and Q(c) as fixed values in your augmented model.
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Estimation of species interaction strengths

14.1 Background

Multivariate autoregressive models (commonly termed MAR models) have been de-
veloped as a tool for analyzing community dynamics from time series data (Ives,
1995; Ives et al., 1999, 2003; Hampton et al., 2013). These models are based on a
process model for log abundances (x) of the form

xt = Bxt−1 +u+wt where wt ∼ MVN(0,Q) (14.1)

B is the interaction matrix; self interaction strengths (density-dependence) are on the
diagonal and inter-specific interaction strengths are on the off-diagonals such that
Bi, j is the ‘effect’ of species j on species i. This model has a stochastic equilibrium—
it fluctuates around mean, (I−B)−1u.

The term u determines the mean level but once the system is at equilibrium, it
does not affect the fluctuations relative to the mean. To see this, compare two models
with b = 0.5 and u = 1 versus u = 0. The mean for the first is 1/(1−0.5) = 2 and for
the second is 0. If we start both 1 above the mean, the next x is the same distance from
the mean: x2 = 0.5(2+1)+1 = 2.5 and x2 = 0.5(0+1)+0 = 0.5. So both end up at
0.5 above the mean. So once the system is at equilibrium, it is ‘scale invariant’, where
u is the scaling term. The way that Ives et al. (2003) write their process model (their
Equation 10) is Xt = A+BXt−1 +Et . The A in Ives’s equation is the u appearing in
Equation 14.1 and the Et is our wt .

Often the models include environmental covariates, but we will leave off co-
variates for the moment and address them at the end of the chapter. If we add a

Type RShowDoc("Chapter_SpeciesInteractions.R",package="MARSS") at the R
command line to open a file with all the code for the examples in this chapter.
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measurement process1, we have a MARSS model:

yt = Zxt +a+vt where vt ∼ MVN(0,R) (14.2)

Typically, we have one time series per species and thus we assume that m = n and
Z is an m × m identity matrix (when m = n, a is set to 0). However, it is certainly
possible to have multiple time series per species (for example data taken at multiple
sites).

In this chapter, we will estimate the B matrix of species interactions for a simple
wolf-moose system and for a four-species freshwater plankton system.

14.2 Two-species example using wolves and moose

Population dynamics of wolves and moose on Isle Royale, Michigan make an in-
teresting case study of a two-species predator-prey interactions. These populations
have been studied intensively since 19582. Unlike other populations of gray wolves,
the Isle Royale population has a diet dominated by one prey item, moose. The only
predator of moose on Isle Royale is the gray wolf, as this population is not hunted.

We will use the wolf and moose winter census data from Isle Royale to learn
how to fit community dynamics models to time-series data. The long-term Jan-
uary (wolf) and February (moose) population estimates are provided at http:
//www.isleroyalewolf.org.

The mathematical form of the process model for the wolf-moose population dy-
namics is [

xw
xm

]

t
=

[
bw→w bm→w
bw→m bm→m

][
xw
xm

]

t−1
+

[
uw
um

]
+

[
ww
wm

]

t[
ww
wm

]

t
∼ MVN

(
0,

[
qw 0
0 qm

]) (14.3)

where w denotes wolf and m denotes moose. w → w is the effect of wolf on wolf
(density-dependence) and w → m is the effect of wolf on moose (predation effect on
moose).

14.2.1 Load in and plot the data

We will use 1960 to 2011. We will hold out 1959 as we will need that year when we
look at the effect of covariates.

yr1960to2011 <- isleRoyal[, "Year"] >= 1960 & isleRoyal[, "Year"] <= 2011
royale.dat <- log(t(isleRoyal[yr1960to2011, c("Wolf", "Moose")]))

1 You can fit a MAR model with no observation error by setting R = 0, but a conditional
least-squares algorithm is vastly faster than EM or BFGS for the R = 0 case (assuming no
missing data).

2 There are many publications from this long-term study site; see http://www.
isleroyalewolf.org/wolfhome/tech_pubs.html and the review here http://www.
isleroyalewolf.org/data/data/home.html.
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x <- isleRoyal[, "Year"]
y <- log(isleRoyal[, c("Wolf", "Moose")])
graphics::matplot(x, y,

ylab = "Log count", xlab = "Year", type = "l",
lwd = 3, bty = "L", col = "black"

)
legend("topright", c("Wolf", "Moose"), lty = c(1, 2), bty = "n")
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Fig. 14.1. Plot of the Isle Royale wolf and moose data.

14.2.2 Fit the model to the wolf-moose data

The naive way to fit the model is to use Equations 14.2 and 14.1 “as is":

royale.model.0 <- list(
B = "unconstrained", Q = "diagonal and unequal",
R = "diagonal and unequal", U = "unequal"

)
kem.0 <- MARSS(royale.dat, model = royale.model.0)

If you try this, you will notice that it does not converge but stops when it reaches
maxit and prints a number of warnings about non-convergence. The problem is that
when you try to estimate B and u, they are often confounded. This a well-known
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problem, and you will need to find a way to fix u at some value. If you are willing
to assume that the process is at equilibrium (i.e., not recovering to equilibrium from
a big perturbation), then you can simply demean the data and set u to 0. It is also
common to standardize the variance by dividing by the square root of the variance of
the data. This is called z-scoring the data.

# if missing values are in the data, they should be NAs
z.royale.dat <- zscore(royale.dat)

We can fit the model to the z-scored data, but we still have convergence issues.

royale.model.1 <- list(
Z = "identity", B = "unconstrained",
Q = "diagonal and unequal", R = "diagonal and unequal",
U = "zero", tinitx = 1

)
cntl.list <- list(allow.degen = FALSE, maxit = 200)
kem.1 <- MARSS(z.royale.dat, model = royale.model.1, control = cntl.list)

Warning! Reached maxit before parameters converged. Maxit was 200.
neither abstol nor log-log convergence tests were passed.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
WARNING: maxit reached at 200 iter before convergence.
Neither abstol nor log-log convergence test were passed.
The likelihood and params are not at the MLE values.
Try setting control$maxit higher.
Log-likelihood: -75.56383
AIC: 171.1277 AICc: 173.4933

Estimate
R.(Wolf,Wolf) 0.001433
R.(Moose,Moose) 0.000362
B.(1,1) 0.768031
B.(2,1) -0.178990
B.(1,2) 0.078335
B.(2,2) 0.827922
Q.(X.Wolf,X.Wolf) 0.455214
Q.(X.Moose,X.Moose) 0.178661
x0.X.Wolf 0.002926
x0.X.Moose -1.192645
Initial states (x0) defined at t=1

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.
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Convergence warnings
Warning: the R.(Wolf,Wolf) parameter value has not converged.
Warning: the R.(Moose,Moose) parameter value has not converged.
Warning: the x0.X.Wolf parameter value has not converged.
Warning: the logLik parameter value has not converged.
Type MARSSinfo("convergence") for more info on this warning.

It looks like R is going to zero, meaning that the maximum-likelihood model is a
process error only model. That is not too surprising given that the data look more
like a random walk than white noise. We will set R manually to zero and assume that
the census is complete (they count all individuals):

royale.model.2 <- list(
Z = "identity", B = "unconstrained",
Q = "diagonal and unequal", R = "zero", U = "zero"

)
kem.2 <- MARSS(z.royale.dat, model = royale.model.2)

Success! abstol and log-log tests passed at 16 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 16 iterations.
Log-likelihood: -81.53121
AIC: 179.0624 AICc: 180.5782

Estimate
B.(1,1) 0.7670
B.(2,1) -0.1788
B.(1,2) 0.0783
B.(2,2) 0.8277
Q.(X.Wolf,X.Wolf) 0.4485
Q.(X.Moose,X.Moose) 0.1758
x0.X.Wolf 0.1471
x0.X.Moose -1.4089
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

14.2.3 Look at the estimated interactions

The estimated B elements are coef(kem.2)$B.
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wolf.B <- coef(kem.2, type = "matrix")$B
rownames(wolf.B) <- colnames(wolf.B) <- rownames(royale.dat)
print(wolf.B, digits = 2)

Wolf Moose
Wolf 0.77 0.078
Moose -0.18 0.828

The coef() function returns the estimated parameters, but in this case we want to see
the estimates in matrix form. Thus we use type="matrix". Element row=i, col= j
in B is the effect of species j on species i, so B2,1 is the effect of wolves on moose
and B1,2 is the effect of moose on wolves. The B matrix suggests that wolves have
a negative effect on moose and that moose have a positive effect on wolves—as one
would expect. The diagonals are interpreted differently than the off-diagonals since
the diagonals are (bi,i − 1) so subtract off 1 from the diagonals to get the effect of
species i on itself. If the species are density-independent, then Bi,i would equal 1.
Smaller Bi,i means more density dependence.

14.2.4 Adding covariates

It is well-known that moose numbers are strongly affected by winter and summer cli-
mate. The Isle Royale data set provided with MARSS has climate data from climate
stations in Northeastern Minnesota, near Isle Royale3. The covariate data include
January-February, July-September and April-May average temperature and precipi-
tation. Also included are three-year running means of these data, where the number
for year t is the average of years t − 1, t and t + 1. We will include these covariates
in the analysis to see how they change our interaction estimates. We have to adjust
our covariates because the census numbers are from winter in year t and we want the
climate data from the previous year to affect this winter’s moose count. As usual, we
will need to demean our covariate data so that we can set u equal to zero. We will
standardize the variance also so that we can more easily compare the effects across
different covariates.

The mathematical form of our new process model for the wolf-moose population
dynamics is

[
xw
xm

]

t
= B

[
xw
xm

]

t−1
+

[
0 0 0

C21 C22 C23

]


win temp
win precip
sum temp




t−1

+

[
ww
wm

]

t
(14.4)

The C21, C22, etc. terms are the effect of winter temperature, winter precipitation,
previous summer temperature and previous summer precipitation on winter moose
numbers. Since climate is known to mainly affect the moose, we set the climate
effects to 0 for wolves (top row of C).

3 From the Western Regional Climate Center. See the help file for this dataset for references
(?isleRoyal).



14.2 Two-species example using wolves and moose 183

First we prepare the covariate data and select the winter temperature and precip-
itation data and the summer temperature data. We need to use the previous year’s
climate data with this winter’s abundance data, so 1959 to 2010.

clim.variables <- c(
"jan.feb.ave.temp", "jan.feb.ave.precip",
"july.sept.ave.temp"

)
yr1959to2010 <- isleRoyal[, "Year"] >= 1959 & isleRoyal[, "Year"] <= 2010
clim.dat <- t(isleRoyal[yr1959to2010, clim.variables])
z.score.clim.dat <- zscore(clim.dat)

A plot of the covariate data against each other indicates that there is not much cor-
relation between winter temperature and precipitation (Figure 14.2, which is good
for analysis purposes, but warm winters are somewhat correlated with warm sum-
mers. The latter will make it harder to interpret the effect of winter versus summer
temperature although the correlation is not too strong fortunately.

Next we prepare the list with the structure of all the model matrices. We give de-
scriptive names to the C elements so we can remember what each C element means.

royale.model.3 <- list(
Z = "identity", B = "unconstrained",
Q = "diagonal and unequal", R = "zero", U = "zero",
C = matrix(list(

0, "Moose win temp", 0, "Moose win precip",
0, "Moose sum temp"

), 2, 3),
c = z.score.clim.dat

)

Then we fit the model with covariates.

kem.3 <- MARSS(z.royale.dat, model = royale.model.3)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Algorithm ran 15 (=minit) iterations and convergence was reached.
Log-likelihood: -80.65261
AIC: 183.3052 AICc: 186.1748

Estimate
B.(1,1) 0.7670
B.(2,1) -0.1638
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B.(1,2) 0.0783
B.(2,2) 0.8339
Q.(X.Wolf,X.Wolf) 0.4485
Q.(X.Moose,X.Moose) 0.1700
x0.X.Wolf 0.1504
x0.X.Moose -1.4412
C.Moose win temp 0.0242
C.Moose win precip -0.0718
C.Moose sum temp -0.0307
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

The results suggest what is already known about this system: cold winters and heavy
snow are bad for moose as are hot summers.
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Fig. 14.2. Pairs plot of the covariate data for Isle Royale with cor-
relations in the lower panel. The R code that produced this plot was
cor.fun=function(x, y)text(0.5,0.5,format(cor(x,y),digits=2),cex=2)
pairs(t(z.score.clim.dat),lower.panel=cor.fun).
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14.2.5 Change the model and data

You can explore the sensitivity of the B estimates when the measurement error is
increased by adding white noise to the data:

bad.data <- z.royale.dat + matrix(rnorm(100, 0, sqrt(.2)), 2, 50)
kem.bad <- MARSS(bad.data, model = model)

You can change the model by changing the constraints on R and Q.

14.3 Some settings to improve performance when estimating B

In the default MARSS model, the value of E[X0|y0] (what x0 denotes when tinitx=0
in the model list) is estimated. If we are estimating the B matrix, it is better to set
tinitx=1 so that we are estimating E[X1|y0] instead4. The model will fit either way,
but setting tinitx=1 in the model list will speed up and stabilize the fitting. It does
not make much of a difference for the wolf-moose dataset but can have a large effect
for larger models. The reason is that the likelihood surface for E[X1|y0] is better be-
haved when B is small. For example, if B equal to 0, there is little information about
E[X0|y0] so the algorithm goes in circles trying to estimate it while there is good
information E[X1|y0] from y1. We could use a prior on the initial x but this requires
its variance-covariance structure, which depends on the unknown B and specifying a
variance-covariance structure that conflicts with B will change your B estimates.

For the wolf-moose model, we set R = 0. The EM algorithm (default) cannot
estimate x0 when tinitx=1 therefore to fit the model with tinitx=1 we need to
use method="BFGS". This is only for the case when R = 05

royale.model.4 <- list(
B = "unconstrained", U = "zero", Q = "diagonal and unequal",
Z = "identity", R = "zero", tinitx = 1

)
kem.4 <- MARSS(z.royale.dat, model = royale.model.4)

The other setting we may want to change is allow.degen in the control list. This
sets the diagonals of Q or R to zero if they are heading towards zero. When the initial
x is at t = 1, this can have non-intuitive (not wrong but puzzling; see Appendix A)
consequences if R is going to zero. So, we will set control$allow.degen=FALSE
and manually set R to 0 if needed.

4 If there are many missing values at t = 1, we might still have problems and have to adjust
accordingly.

5 because the update for (x0
1) j+1 is xT

1 but when R = 0 and V0
1 = 0, xT

1 will equal (x0
1) j, i.e.,

whatever value you started with. Thus the estimate of x0
1 never changes.
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14.4 Analysis a four-species plankton community

Ives et al. (2003) presented weekly data on the biomass of two species of phyto-
plankton and two species of zooplankton in two lakes, one with low planktivory and
one with high planktivory. They used these data to estimate the interaction terms for
the four species. Here we will reanalyze data and compare our results.

Ives et al. (2003) explain the data as: “The data consist of weekly samples of
zooplankton and phytoplankton, which for the analyses were divided into two zoo-
plankton groups (Daphnia and non-Daphnia) and two phytoplankton groups (large
and small phytoplankton). Daphnia are large, effective herbivores, and small phy-
toplankton are particularly vulnerable to herbivory, so we anticipate strong interac-
tions between Daphnia and small phytoplankton groups.” Figure 14.3 shows the data.
What you can see from the figure is that the data are only collected in the summer.

14.4.1 Load in the plankton data

# only use the plankton, daphnia, & non-daphnia
plank.spp <- c("Large Phyto", "Small Phyto", "Daphnia", "Non-daphnia")
plank.dat <- ivesDataByWeek[, plank.spp]
# The data are not logged
plank.dat <- log(plank.dat)
# Transpose to get time going across the columns
plank.dat <- t(plank.dat)
# make a demeaned version
d.plank.dat <- (plank.dat - apply(plank.dat, 1, mean, na.rm = TRUE))

We will demean the data so we can set u to 0. We do not standardize by the variance,
however because we are going to fix the R variance later as Ives et al. did.

14.4.2 Specify a MARSS model for the plankton data

We will start by fitting a model with the following assumptions:

• All phytoplankton share the same process variance.
• All zooplankton share the same process variance.
• Phytoplankton and zooplankton have different measurement variances
• Measurement errors are independent.
• Process errors are independent.

Q <- matrix(list(0), 4, 4)
diag(Q) <- c("Phyto", "Phyto", "Zoo", "Zoo")
R <- matrix(list(0), 4, 4)
diag(R) <- c("Phyto", "Phyto", "Zoo", "Zoo")
plank.model.0 <- list(
B = "unconstrained", U = "zero", Q = Q,
Z = "identity", A = "zero", R = R,
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Fig. 14.3. Plot of the demeaned plankton data. Zooplankton are the thicker lines. Phytoplank-
ton are the thinner lines.

x0 = "unequal", tinitx = 1
)

Why did we set U="zero"? Equation 14.1 is a stationary model; it fluctuates about
a mean. The u in Equation 14.1 is a scaling term that just affects the mean level—
once the system is at equilibrium. If we assume that the mean of y (the mean of our
data) is a good estimate of the mean of the system (the x), then we can set u equal to
zero (and a). The initial states (x) are set at t = 1 instead of t = 0, which improves
estimation for large systems.

14.4.3 Fit the plankton model and look at the estimated B matrix

The call to fit the model is:

kem.plank.0 <- MARSS(d.plank.dat, model = plank.model.0)

Now we can print the B matrix, with a little clean up.

# Cleaning up the B matrix for printing
B.0 <- coef(kem.plank.0, type = "matrix")$B[1:4, 1:4]
rownames(B.0) <- colnames(B.0) <- c("LP", "SP", "D", "ND")
print(B.0, digits = 2)

LP SP D ND
LP 0.77 0.29 -0.0182 0.131
SP 0.19 0.51 0.0052 -0.045
D -0.43 2.29 0.4916 0.389
ND -0.33 1.35 -0.2180 0.831
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LP stands for large phytoplankton, SP for small phytoplankton, D for Daphnia and
ND for non-Daphnia.

We can compare this to the Ives et al. estimates (in their Table 2, bottom right)
and see quite a few differences:

LP SP D ND
LP 0.48 -0.39 -- --
SP -- 0.25 -0.17 -0.11
D -- -- 0.74 0.00
ND -- 0.10 0.00 0.60

First, you will notice is that the Ives et al. matrix is missing values. The matrix
they show is after a model selection step to determine which interactions had little
data support and thus could be set to zero. Also, they fixed the interactions between
Daphnia and non-Daphnia at zero because they do not prey on each other. The second
thing you will notice is that the estimates are not particularly similar. Next we will
try some other ways of fitting the data that are closer to the way that Ives et al. fitted
the data.

By the way, if you are curious what would happen if we removed all those NAs,
you can run the following code.

test.dat <- d.plank.dat[, !is.na(d.plank.dat[1, ])]
test <- MARSS(test.dat, model = plank.model.0)

Removing all the NAs would mean that the end of summer 1 is connected to the
beginning of summer 2. This adds some steep steps in the Daphnia time series where
Daphnia ended the summer high and started the next summer low.

14.4.4 Look at different ways to fit the model

We will try a series of changes to get closer to the way Ives et al. fit the data, and you
will see how different assumptions change (or do not change) our species interaction
estimates.

First, we change Q to be unconstrained. Making Q diagonal in model 0 meant
that we were assuming that whatever environmental factor is driving variation in
phytoplankton numbers is uncorrelated with the environmental factor driving zoo-
plankton variation. That is probably not true since they are all in the same lake. This
case takes awhile to run.

plank.model.1 <- plank.model.0
plank.model.1$Q <- "unconstrained"
kem.plank.1 <- MARSS(d.plank.dat, model = plank.model.1)

Notice that the Q specification changed to “unconstrained”. Everything else stays
the same as in model 0. The code now runs longer, and the B estimates are not
particularly closer to Ives et al.
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LP SP D ND
LP 0.4961 0.061 0.079 0.123
SP -0.1833 0.896 0.067 0.011
D 0.1180 0.350 0.638 0.370
ND 0.0023 0.370 -0.122 0.810

Next, we will set some of the interactions to zero as in Table 2 in Ives et al.
(2003). In their table, certain interactions were fixed at 0 (denoted with 0s), and
some were made 0 after fitting (the blanks). We will fix all to zero. To do this, we
need to write out the B matrix as a list matrix so that we can have estimated and fixed
values (the 0s) in the B specification.

B.2 <- matrix(list(0), 4, 4) # set up the list matrix
diag(B.2) <- c("B11", "B22", "B33", "B44") # give names to diagonals
# and names to the estimated non-diagonals
B.2[1, 2] <- "B12"
B.2[2, 3] <- "B23"
B.2[2, 4] <- "B24"
B.2[4, 2] <- "B42"
print(B.2)

[,1] [,2] [,3] [,4]
[1,] "B11" "B12" 0 0
[2,] 0 "B22" "B23" "B24"
[3,] 0 0 "B33" 0
[4,] 0 "B42" 0 "B44"

As you can see, the B matrix now has elements that will be estimated (the names
in quotes) and fixed values (the numbers with no quotes). When preparing your list
matrix, make sure your fixed values do not have quotes around them. If they do, they
are strings (class character) not numbers (class numeric), and MARSS() will interpret
a string as the name of something to be estimated. If you use the same name for an
element, then MARSS() will force those elements to be shared (have the same value).

# model 2
plank.model.2 <- plank.model.1
plank.model.2$B <- B.2
kem.plank.2 <- MARSS(d.plank.dat, model = plank.model.2)

Now we are getting closer to the Ives et al. estimates:

LP SP D ND
LP 0.65 -0.33 -- --
SP -- 0.54 0.0016 -0.026
D -- -- 0.8349 --
ND -- 0.13 -- 0.596
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Ives et al. did not estimate R. Instead they used a fixed observation variance of
0.04 for phytoplankton and 0.16 for zooplankton6. We fit the model with their fixed
R as follows:

# model 3
plank.model.3 <- plank.model.2
plank.model.3$R <- diag(c(.04, .04, .16, .16))
kem.plank.3 <- MARSS(d.plank.dat, model = plank.model.3)

As you can see from Table 14.1, we are getting closer to the Ives et al. estimates,
but we are still a bit off. Now we need to add the environmental covariates: phospho-
rous and fish biomass.

14.4.5 Adding covariates

A standard way that you will see covariate data added to a MARSS model is the
following:

xt = Bxt−1 +u+Cct +wt , where wt ∼ MVN(0,Q)

yt = Zxt +a+Ddt +vt , where vt ∼ MVN(0,R)
(14.5)

ct and dt are covariate data, like temperature. At time t and C is a matrix with the
(linear) effects of ct on xt , and D is a matrix with the (linear) effects of dt on yt .

Ives et al. (2003) only include covariates in their process model, and their process
model (their Equation 27) is written Xt = A + BXt−1 + CUt + Et . In our Equation
14.5, Ut = ct , and C is a m × p matrix, where p is the number of covariates in ct .
We will set their A (our u) to zero by demeaning the y and implicitly assuming that
the mean of the y is a good estimate of the mean of the x’s. Thus the model where
covariates only affect the underlying process is

xt = Bxt−1 +Cct +wt , where wt ∼ MVN(0,Q)

yt = xt +vt , where vt ∼ MVN(0,R)
(14.6)

To fit this model, we first need to prepare the covariate data. We will just use the
phosphorous data.

# transpose to make time go across columns
# drop=FALSE so that R doesn't change our matrix to a vector
phos <- t(log(ivesDataByWeek[, "Phosph", drop = FALSE]))
d.phos <- (phos - apply(phos, 1, mean, na.rm = TRUE))

Why log the covariate data? It is what Ives et al. did, so we follow their method.
However, in general, you want to think about what relationship you want to assume
between the covariates and their effects. For example, log (or square-root) transfor-
mations mean that extremes have less impact relative to their untransformed value

6 You can compare this to the estimated observation variances by looking at
coef(kem.plank.2)$R
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and that a small absolute change, say from 0.01 to 0.0001 in the untransformed value,
can mean a large difference in the effect since log(0.0001) < log(0.01).

Phosphorous is assumed to only affect phytoplankton so the other terms in C,
corresponding to the zooplankton, are set to 0. The C matrix is defined as follows:

C =




CLP,phos
CSP,phos

0
0


 (14.7)

To add C and c to our latest model, we add C and c to the model list used in the
MARSS() call:

plank.model.4 <- plank.model.3
plank.model.4$C <- matrix(list("C11", "C21", 0, 0), 4, 1)
plank.model.4$c <- d.phos

Then we fit the model as usual:

kem.plank.4 <- MARSS(d.plank.dat, model = plank.model.4)

Here is the C matrix. The C terms for the zooplankton are shown as -- since they are
not applicable (have been set to 0). Temperature and phosphorous have an estimated
positive effect on phytoplankton:

[,1]
LP 0.14
SP 0.16
D --
ND --

14.4.6 Including a covariate observation model

The difficulty with the standard approach to including covariates (Equation 14.5)
is that it limits what kind of covariate data you can use and how you model that
covariate data. You have to assume that your covariate data has no error, which is
probably not true. Assuming that your covariate has no error reduces the reported
uncertainty in your covariate effect because you did not include uncertainty in those
values. The standard approach also does not allow missing values in your covariate
data, which is why we did not include the fish covariate data in the last model. Also
you cannot combine multiple instrument time series; for example, if you have two
temperature recorders with different error rates and biases. Perhaps you have one
noisy temperature recorder in the first part of your time series and then you switch
to a much better recorder in the second half of your time series. All these problems
require pre-analysis massaging of the covariate data, leaving out noisy and gappy
covariate data, and making what can feel like arbitrary choices about which covariate
time series to include. This is especially worrisome when the covariates are then
incorporated into the model as if they are known without error.
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Instead one can include an observation and process model for the covariates just
like for the non-covariate data. Now the covariates are included in yt and are modeled
with their own state process(es) in xt . A MARSS model with a covariate observation
and process model is shown below. The elements with superscript (v) are for the vari-
ates and those with superscript (c) are for the covariates. The superscripts just help us
keep straight which of the state processes and parameters correspond to abundances
and which correspond to the environmental covariates.
[

x(v)

x(c)

]

t
=

[
B(v) C

0 B(c)

][
x(v)

x(c)

]

t−1
+

[
u(v)

u(c)

]
+wt , wt ∼ MVN

(
0,

[
Q(v) 0

0 Q(c)

])

[
y(v)

y(c)

]

t
=

[
Z(v) 0

0 Z(c)

][
x(v)

x(c)

]

t
+

[
a(v)

a(c)

]
+vt , vt ∼ MVN

(
0,

[
R(v) 0

0 R(c)

])

(14.8)
Note that when you fit your covariate and non-covariate data jointly as in Equa-

tion 14.8, your non-covariate data affect the estimates of the covariate models. When
you maximize the likelihood, you do so conditioned on all the data. The likelihood
that is output is the likelihood of the non-covariate and covariate data. Depending on
your system, you might not want the covariate model affected by the non-covariate
data. In this case, you can fit the covariate model separately:

x(c)
t = B(c)x(c)

t−1 +u(c) +wt , wt ∼ MVN(0,Q(c))

y(c)
t = Z(c)x(c)

t +a(c), vt ∼ MVN(0,R(c))
(14.9)

At this point, you have another choice. Do you want the estimated covariates
states, the x(c), to be affected by the non-covariate data? For example, you have
temperature data. You can estimates true temperature for the temperature only from
the temperature data or you can decide that the non-covariate data has information
about the true temperature, because the non-covariate states are affected by the true
temperature. If you want the covariate states to only be affected by the covariate data,
then use Equation 14.5 with ct set to your estimates of x(c) from Equation 14.9. Or
if you want the non-covariate data to affect the estimates of the covariate states, use
Equation 14.8 with the parameters estimated from Equation 14.9.

14.4.7 The MARSS model with covariates following Ives et al.

Ives et al. used Equation 14.5 for phosphorous and Equation 14.8 for fish biomass.
Phosphorous was treated as observed with no error since it was experimentally ma-
nipulated and there were no missing values. Fish biomass was treated as having
observation error and was modeled as a autoregressive process with unknown pa-
rameters as in Equation 14.8.

Their MARSS model takes the form:

xt = Bxt−1 +Cct +wt , where wt ∼ MVN(0,Q)

yt = xt +vt , where vt ∼ MVN(0,R)
(14.10)
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where x and y are redefined as



large phyto
small phyto

Daphnia
non-Daphnia zooplank

fish biomass




(14.11)

The covariate fish biomass appears in x because it will be modeled, and its interaction
terms (Ives et al.’s C terms) appear in B. Phosphorous appears in the ct terms because
it is treated as a known additive term and its interaction terms appear in C. Recall
that we set u to 0 by demeaning the plankton data, so it does not appear above. The Z
matrix does not appear in front of the xt since there is a one-to-one correspondence
the x’s and y’s, and thus Z is the identity matrix.

The B matrix is

B =

[
B(v) C

0 B(c)

]
=




bLP bLP,SP 0 0 0
0 bSP bSP,D bSP,ND 0
0 0 bD 0 CD, f ish
0 bND,SP 0 bND,ND CND, f ish
0 0 0 0 b f ish




(14.12)

The B elements have some interactions fixed at 0 as in our last model fit. The c’s are
the interactions between the fish and the species. We will estimate a B term for fish
since Ives et al. did, but this is an odd thing to do for the fish data since these data
were interpolated from two samples per season.

The Q matrix is the same as that in our last model fit, with the addition of an
element for the variance for the fish biomass:

Q =

[
Q(v) 0

0 Q(c)

]
=




qLP qLP,SP qLP,D qLP,ND 0
qLP,SP qSP qSP,D qSP,ND 0
qLP,D qSP,D qD qD,ND 0

qLP,ND qSP,ND qD,ND qND 0
0 0 0 0 q f ish




(14.13)

Again it is odd to estimate a variance term for data interpolated from two points, but
we follow Ives et al. here.

Ives et al. set the observation variance for the logged fish biomass data to 0.36
(page 320 in Ives et al. (2003)). The observation variances for the plankton data was
set as in our previous model.

R =




0.04 0 0 0 0
0 0.04 0 0 0
0 0 0.16 0 0
0 0 0 0.16 0
0 0 0 0 0.36




(14.14)
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14.4.8 Setting the model structure for the model with fish covariate data

First we need to add the logged fish biomass to our data matrix.

# transpose to make time go across columns
# drop=FALSE so that R doesn't change our matrix to a vector
fish <- t(log(ivesDataByWeek[, "Fish biomass", drop = FALSE]))
d.fish <- (fish - apply(fish, 1, mean, na.rm = TRUE))
# plank.dat.w.fish = rbind(plank.dat,fish)
d.plank.dat.w.fish <- rbind(d.plank.dat, d.fish)

Next make the B matrix. Some elements are estimated and others are fixed at 0.

B <- matrix(list(0), 5, 5)
diag(B) <- list("B11", "B22", "B33", "B44", "Bfish")
B[1, 2] <- "B12"
B[2, 3] <- "B23"
B[2, 4] <- "B24"
B[4, 2] <- "B42"
B[1:4, 5] <- list(0, 0, "C32", "C42")
print(B)

[,1] [,2] [,3] [,4] [,5]
[1,] "B11" "B12" 0 0 0
[2,] 0 "B22" "B23" "B24" 0
[3,] 0 0 "B33" 0 "C32"
[4,] 0 "B42" 0 "B44" "C42"
[5,] 0 0 0 0 "Bfish"

Now we have a B matrix that looks like that in Equation 14.12.
We need to add an extra row to C for the fish biomass row in x:

C <- matrix(list("C11", "C21", 0, 0, 0), 5, 1)

Then we set up the R matrix.

R <- matrix(list(0), 5, 5)
diag(R) <- list(0.04, 0.04, 0.16, 0.16, 0.36)

Last, we need to set up the Q matrix:

Q <- matrix(list(0), 5, 5)
Q[1:4, 1:4] <- paste(rep(1:4, times = 4), rep(1:4, each = 4), sep = "")
Q[5, 5] <- "fish"
Q[lower.tri(Q)] <- t(Q)[lower.tri(Q)]
print(Q)

[,1] [,2] [,3] [,4] [,5]
[1,] "11" "12" "13" "14" 0
[2,] "12" "22" "23" "24" 0
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[3,] "13" "23" "33" "34" 0
[4,] "14" "24" "34" "44" 0
[5,] 0 0 0 0 "fish"

14.4.9 Fit the model with covariates

The model is the same as the previous model with updated process parameters and
updated R. We will pass in the updated data matrix with the fish biomass added:

plank.model.5 <- plank.model.4
plank.model.5$B <- B
plank.model.5$C <- C
plank.model.5$Q <- Q
plank.model.5$R <- R
kem.plank.5 <- MARSS(d.plank.dat.w.fish, model = plank.model.5)

This is the new B matrix using covariates.

LP SP D ND
LP 0.61 -0.465 -- --
SP -- 0.333 -0.019 -0.048
D -- -- 0.896 --
ND -- 0.044 -- 0.675

Now we are getting are getting close to Ives et al.’s estimates. Compare model 5 in
Table 14.1 to the first column.

Table 14.1. The parameter estimates under the different plankton models. Models 0 to 3 do
not include covariates, so the C elements are blank. Bij is the effect of species i on species
j. 1=large phytoplankton, 2=small phytoplankton, 3=Daphnia, 4=non-Daphnia zooplankton.
The Ives et al. (2003) estimates are from their table 2 for the low planktivory lake with the
observation model.

Ives et al. Model 0 Model 1 Model 2 Model 3 Model 4 Model 5
B11 0.48 0.77 0.50 0.65 0.62 0.61 0.61
B22 0.25 0.51 0.90 0.54 0.51 0.33 0.33
B33 0.74 0.49 0.64 0.83 0.89 0.89 0.90
B44 0.60 0.83 0.81 0.60 0.67 0.66 0.67
B12 -0.39 0.29 0.06 -0.33 -0.32 -0.46 -0.46
B23 -0.17 0.01 0.07 0.00 -0.02 -0.02 -0.02
B24 -0.11 -0.04 0.01 -0.03 0.02 -0.05 -0.05
B42 0.10 1.35 0.37 0.13 0.09 0.05 0.04
C11 0.25 0.14 0.14
C21 0.25 0.16 0.16
C32 -0.14 -0.04
C42 -0.04 -0.01

NOTE! When you include your covariates in your state model (the x part), the
reported log-likelihood is for the variate plus the covariate data. If you want just the
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log-likelihood for the variates, then you should replace the covariate data with NAs
and re-run the Kalman filter with your estimated model:

tmp <- kem.plank.5
tmp$marss$data[5, ] <- NA
LL.variates <- MARSSkf(tmp)$logLik

MARSSkf() is the Kalman filter function and it needs a fitted model as output by a
MARSS() call. We set up a temporary fitted model, tmp, equal to our fitted model and
then set the covariate data in that to NAs. Note we need to do this for the marss-
MODEL object used by MARSSkf(), which will be in MLEobj$marss. We then pass
that temporary fitted model to MARSSkf() to get the log-likelihood of just the vari-
ates.

14.4.10 Discussion

The estimates for our last model are fairly close to the Ives et al. estimates, but still
a bit different. There are two big differences between our last model and the Ives et
al. analysis. Ives et al. had data from three lakes and the estimate of Q used the data
from all lakes.

Combining data, whether it be from different areas or years, can be done in a
MARSS model as follows. Let y1 be the first data set (say from site 1) and y2 be
the second data set (say from site 2). Then a MARSS model with shared parameters
values across datasets would be

x+
t = B+x+

t−1 +u+wt , where wt ∼ MVN(0,Q+)

y+
t = Z+x+

t +a+ +vt , where vt ∼ MVN(0,R+)
(14.15)

where the + matrices are stacked matrices from the different sites (1 and 2):
[

x1,t
x2,t

]
=

[
B 0
0 B

][
x1,t−1
x2,t−1

]
+

[
u
u

]
+wt , wt ∼ MVN

(
0,

[
Q q
q Q

])

[
y1,t
y2,t

]
=

[
Z 0
0 Z

][
x1,t
x2,t

]
+

[
a
a

]
+vt , vt ∼ MVN

(
0,

[
R 0
0 R

])
(14.16)

The q in the process variance allows that the environmental variability might be
correlated between datasets, e.g., if they are replicate plots that are nearby. If you did
not want all the parameters shared, then you replace the B in B+ with B1 and B2,
say.

The second big difference is that Ives et al. did not demean their data, but es-
timated u. We could have done that too, but with all the NAs in the data (during
winter), estimating u is not robust and takes a long time. You can try the analysis
on the data that has not been demeaned and set U="unequal". The results are not
particularly different, but it takes a long, long,...long time to converge.

You can also try using the actual fish data instead of the interpolated data. Fish
biomass was estimated at the end and start of the season, so only the values at the
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start and finish of strings of fish numbers are the real data. The others are interpolated.
You can fill in those interpolated values with NAs (missing values) and rerun. The
results are not appreciably different, but the effect of fish drops a bit as you might
expect when you have less fish information. You don’t see it here, but your estimated
confidence in the fish effects would also drop since this estimate is based on less fish
data.

14.5 Stability metrics from estimated interaction matrices

The previous sections focused on estimation of the B and C matrices. The estimated
B matrix gives a picture of the species interactions, but it also can be used to compute
metrics of the intrinsic community stability (Ives et al., 2003). Here we illustrate how
to compute these metrics; the reader should see Ives et al. (2003) for details on the
meaning of each.

For the examples here, we will use the estimated B and Q matrices from our
model 5:

B <- coef(kem.plank.5, type = "matrix")$B[1:4, 1:4]
Q <- coef(kem.plank.5, type = "matrix")$Q[1:4, 1:4]

14.5.1 Return rate metrics

Return rate metrics measure how rapidly the system returns to the stationary distribu-
tion of species abundances after it is perturbed away from the stationary distribution.
With a deterministic (Q = 0) MARSS community model, the equilibrium is a point
or stable limit cycle. In a stochastic model (Q ̸= 0), the equilibrium is stochastic and
is a stationary distribution. Rate of return to the stochastic equilibrium is the rate
at which the distribution converges to the stationary distribution after a perturbation
away from this stationary distribution. The more rapid the convergence, the more
stable the system.

The rate of return of the mean of the stationary distribution is governed by the
dominant eigenvalue of B. We can compute this as:

max(eigen(B)$values)

[1] 0.8964988

The rate of return of the variance of the stationary distribution is governed by the
dominant eigenvalue of B⊗B:

max(eigen(kronecker(B, B))$values)

[1] 0.8037101
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14.5.2 Variance metrics

These metrics measure the variance of the stationary distribution of species abun-
dances (with variance due to environmental drivers removed) relative to the process
error variance. The system is considered more stable when the stationary distribution
variance is low relative to the process error variance.

To compute variance metrics, we need to first compute the variance-covariance
matrix for the stationary distribution, V∞:

m <- nrow(B)
vecV <- solve(diag(m * m) - kronecker(B, B)) %*% as.vector(Q)
V_inf <- matrix(vecV, nrow = m, ncol = m)

A measure of the proportion of the “volume” of the stationary distribution due to
species interactions is given by the square of the determinant of the B matrix (Eqn.
24 in Ives et al. (2003)):

abs(det(B))^2

[1] 0.01559078

To compare stability across systems of different sizes, you scale by the number of
species:

abs(det(B))^(2 / nrow(B))

[1] 0.3533596

14.5.3 Reactivity metrics

Reactivity measure how the system responds to a perturbation. A highly reactive
system tends to move farther away from a stable equilibrium immediately after a
perturbation, even though the system will eventually return to the equilibrium. High
reactivity occurs when species interactions greatly amplify the environmental vari-
ance to produce a stationary distribution with high variances in the abundance of
individual species.

Both metrics of reactivity of estimates of the average expected change in distance
from the mean of the stationary distribution. The first uses estimates of Q and V∞.

-sum(diag(Q)) / sum(diag(V_inf))

[1] -0.346845

Estimation of Q is prone to high uncertainty. Another metric that uses only B is the
worst-case reactivity. This is given by

max(eigen(t(B) %*% B)$values) - 1

[1] -0.1957795
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14.6 Further information

MAR modeling and models have been used estimate species interaction strengths,
stability metrics, and environmental drivers for a variety of freshwater plankton sys-
tems (Ives, 1995; Ives et al., 1999, 2003; Hampton et al., 2008, 2006; Hampton and
Schindler, 2006; Klug and Cottingham, 2001). They have been used to gain much
insight into the dynamics of ecological communities and how environmental drivers
affect the system. See Hampton et al. (2013) for a review of the literature using MAR
models to understand plankton dynamics.
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Combining data from multiple time series

15.1 Overview

In this section, we consider the case where multiple time series exist and we want to
use all the datasets to estimate a common underlying state process or common un-
derlying parameters. An example where this arises in ecological applications is when
1) there are time series of observations from the same population or location (e.g.,
aerial and land based surveys of the same site) or 2) there are time series collected
in the same survey, but represent observations of multiple underlying state processes
(e.g., multiple species or populations or age groups). An example of the latter is data
from trawl surveys where multiple species of fish are collected in one trawl.

Why should we consider using other time series? In the first scenario, where
methodology differs between time series, observation error may be survey-specific.
We would like to use both time series but need to account for the different observa-
tion error variance. In the second scenario, we are observing multiple different state
processes, but because the survey methodology is the same, it might be reasonable to
assume a shared observation error variance. If whatever we are surveying has similar
responses to environmental stochasticity, it might be possible to also assume a shared
process variance across the state processes.

In both of the above examples, MARSS models offer a way to link multiple time
series. If parameters are allowed to be shared among the state processes (trend param-
eters, process variances) or observation processes (observation variances), parameter
estimates will be more precise than if we treated each time series as independent. By
improving estimates of variance parameters, we will also be better able to discrimi-
nate between process and observation error variances.

Type RShowDoc("Chapter_CombiningTrendData.R",package="MARSS") at the R
command line to open a file with all the code for the examples in this chapter.
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In this chapter, we will show examples of using MARSS models to analyze data
on poplations of multiple species but where there are multiple observation time series
that come from different survey methods. The state process is written as:

xt = Bxt−1 +u+wt where wt ∼ MVN(0,Q) (15.1)

The true population sizes at time t are represented by the state xt , whose dimensions
are equal to the number of state processes (m). The m×m matrix B allows interaction
between processes (density dependence and competition, for instance), u is a vector
describing the mean trend, and the correlation of the process deviations is determined
by the structure of the matrix Q.

The multivariate observation error model is expressed as,

yt = Zxt +a+vt where vt ∼ MVN(0,R) (15.2)

where yt is a vector of observations at time t, Z is a design matrix of 0s and 1s, a is
a vector of bias adjustments, and the correlation structure of observation matrices is
specified with the matrix R. Including Z and a is required when some of the states
processes are observed with multiple observation time series.

15.2 Salmon spawner surveys

In our first application, we will analyze a dataset on Chinook salmon (Oncorhynchus
tshawytscha). This dataset comes from the Okanogan River in Washington state, a
major tributary of the Columbia River (with headwaters in British Columbia). As an
index of the abundance of spawning adults, biologists have conducted redd surveys
during summer months (redds are nests or collection of rocks on stream bottoms
where females deposit eggs). Our data are aerial surveys of redds on the Okanogan
River conducted 1956-2008 and ground surveys of redds from 1990-2008.

15.2.1 Read in and plot the raw data

We will be using the aerial and ground surveys and logging the counts.

head(okanaganRedds)

Year aerial ground
[1,] 1956 37 NA
[2,] 1957 53 NA
[3,] 1958 94 NA
[4,] 1959 50 NA
[5,] 1960 29 NA
[6,] 1961 NA NA

logRedds <- log(t(okanaganRedds)[c("aerial", "ground"), ])

Notice that the ground surveys did not start until 1990.
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Fig. 15.1. The two time series look to be pretty close to one another in the years where there
is overlap.

15.2.2 Test hypotheses about whether the data can be combined

Do these surveys represent observations of the same underlying process? We can
evaluate data support for this question by testing a few relatively simple models. Us-
ing the logged data, we will start with a simple model that assumes the underlying
population process is univariate (there is one underlying population trajectory) and
each survey is an independent observation of this population process. Mathemati-
cally, the model is:

xt = xt−1 +u+wt , where wt ∼ N(0,q)
[

yaer
ygnd

]

t
=

[
1
1

]
xt +

[
0
a2

]
+

[
vaer
vgnd

]

t
, where vt ∼ MVN

(
(0,

[
r 0
0 r

])
(15.3)

The a structure means that the a for one of the y’s is fixed at 0 and the other a is
estimated relative to that fixed a. In MARSS, this is the “scaling” structure for a. We
specify this model as follows. Since x is univariate, Q and u are just scalars (single
numbers), and we can leave them off in our specification.

Fit the single state model, where the two surveys are assumed to be observing the
same population.
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model1 <- list()
model1$R <- "diagonal and equal"
model1$Z <- matrix(1, 2, 1)
model1$A <- "scaling"
kem1 <- MARSS(logRedds, model = model1)

The AIC and AICc values for this model are
We can modify the above model to let the observation error variances to be

unique:

model2 <- model1 # model2 is based on model1
model2$R <- "diagonal and unequal"
kem2 <- MARSS(logRedds, model = model2)

It is possible that these surveys are measuring different population processes.
They are not done at exactly the same days or locations. For our third model, we will
fit a model with two different population process with the same process parameters.
For simplicity, we will keep the trend and variance parameters the same. Mathemat-
ically, the model we are fitting is:

[
x1
x2

]

t
=

[
x1
x2

]

t−1
+

[
u
u

]
+wt , where wt ∼ MVN

(
0,

[
q 0
0 q

])

[
yaer
ygnd

]

t
=

[
1 0
0 1

][
x1
x2

]

t
+

[
0
0

]
+

[
vaer
vgnd

]

t
, where vt ∼ MVN

(
0,

[
r 0
0 r

]) (15.4)

We specify this in MARSS as

model3 <- list()
model3$Q <- "diagonal and equal"
model3$R <- "diagonal and equal"
model3$U <- "equal"
model3$Z <- "identity"
model3$A <- "zero"
kem3 <- MARSS(logRedds, model = model3)

Based on AICc, it appears that the best model is also the simplest one, with one
state vector (model1).

c(mod1 = kem1$AICc, mod2 = kem2$AICc, mod3 = kem3$AICc)

mod1 mod2 mod3
133.9804 136.2164 174.1392

This suggests that the two different surveys are not only measuring the same under-
lying process, but have the same observation error variance. On the surface, similar
observation error variances might seem impossible but it may be that stream turbidity
is what drives observation error variance for both types of surveys. Finally, we will
make a plot of the model-predicted states (with +/- 2 s.e.s) and the log-transformed
data (Figure 15.2).
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Fig. 15.2. The data support the hypothesis that the two redd-count time series are observa-
tions of the same population. The points are the data and the thick black line is the estimated
underlying state.

15.3 American kestrel abundance indices

In this example, we evaluate uncertainty in the structure of process variability (en-
vironmental stochasticity) using breeding bird surveys data. In this analysis, we
use three time series of American kestrel (Falco sparverius) abundance from ad-
jacent Canadian provinces along a longitudinal gradient (British Columbia, Alberta,
Saskatchewan). The data were collected annually and corrected for changes in ob-
server coverage and detectability.

15.3.1 The data

Figure 15.3 shows the data. The data are already log transformed.

birddat <- t(kestrel[, c("British.Columbia", "Alberta", "Saskatchewan")])
head(kestrel)

Year British.Columbia Alberta Saskatchewan
[1,] 1969 0.754 0.460 0.000
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[2,] 1970 0.673 0.899 0.192
[3,] 1971 0.734 1.133 0.280
[4,] 1972 0.589 0.528 0.386
[5,] 1973 1.405 0.789 0.451
[6,] 1974 0.624 0.528 0.234
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Fig. 15.3. The kestrel data.

We know that the surveys use the same design, so we will force observation error
to be shared. Our uncertainty lies in whether these time series are sampling the same
population, and how environmental stochasticity varies by subpopulation (if there
are subpopulations). Our first model has one population trajectory (meaning there is
one panmictic BC/AB/SK population), and each of these three surveys is an observa-
tion of this single population with equal observation variances. Mathematically, the
model is:

xt = xt−1 +u+wt , where wt ∼ N(0,q)



yBC
yAB
ySK




t

=




1
1
1


xt +




0
a2
a3


+




vBC
vAB
vSK




t

, where vt ∼ MVN


0,




r 0 0
0 r 0
0 0 r




 (15.5)



15.3 American kestrel abundance indices 207

In MARSS, we denote the model:

model.b1=list()
model.b1$R="diagonal and equal"
model.b1$Z=matrix(1,3,1)
kem.b1 = MARSS(birddat, model=model.b1, control=list(minit=100) )

We do not need to specify the structure of Q and u since they are scalar and have no
structure.

We will compare this to a model where we assume that there is a separate popula-
tion for British Columbia, Alberta, and Saskatchewan but they have the same process
parameters (trend and process variance). Mathematically, this model is:




xBC
xAB
xSK




t
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xBC
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xSK




t−1

+




u
u
u


+wt , where wt ∼ MVN
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(15.6)
This is specified as:

model.b2 <- list()
model.b2$Q <- "diagonal and equal"
model.b2$R <- "diagonal and equal"
model.b2$Z <- "identity"
model.b2$A <- "zero"
model.b2$U <- "equal"
kem.b2 <- MARSS(birddat, model = model.b2)

Because these populations are surveyed over a relatively large geographic area,
it is reasonable to expect that environmental variation may differ between provinces.
For our third model, we will fit a model with separate processes that are allowed to
have unequal process parameters.

model.b3 <- model.b2 # is is based on model.b2
# all we change is the structure of Q
model.b3$Q <- "diagonal and unequal"
model.b3$U <- "unequal"
kem.b3 <- MARSS(birddat, model = model.b3)

For our last model, we will consider a model where the Alberta and Saskatchewan
surveys are observing the same population. Mathematically, this model is:
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[

xBC
xAB−SK

]

t
=

[
xBC

xAB−SK

]

t−1
+

[
u
u

]
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[
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(15.7)
This model is specified as

model.b4 <- list()
model.b4$Q <- "diagonal and unequal"
model.b4$R <- "diagonal and equal"
model.b4$Z <- factor(c("BC", "AB-SK", "AB-SK"))
model.b4$A <- "scaling"
model.b4$U <- "unequal"
kem.b4 <- MARSS(birddat, model = model.b4)

The AICc values for the four models are

c(mod1 = kem.b1$AICc, mod2 = kem.b2$AICc,
mod3 = kem.b3$AICc, mod4 = kem.b4$AICc)

mod1 mod2 mod3 mod4
20.90670 22.96714 23.75125 14.76889

The last model is superior to the others based on AICc. Figure 15.4 shows the fits for
this model.
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Fig. 15.4. Plot model 4 fits to the kestrel data.





16

Univariate dynamic linear models (DLMs)

16.1 Overview of dynamic linear models

In this chapter, we will use MARSS to analyze dynamic linear models (DLMs),
wherein the parameters in a regression model are treated as time-varying. DLMs are
used commonly in econometrics, but have received less attention in the ecological
literature (c.f. Lamon III et al., 1998; Scheuerell and Williams, 2005). Our treatment
of DLMs is rather cursory—we direct the reader to excellent textbooks by Pole et al.
(1994) and Petris et al. (2009) for more in-depth treatments of DLMs. The former
focuses on Bayesian estimation whereas the latter addresses both likelihood-based
and Bayesian estimation methods.

We begin our description of DLMs with a static regression model, wherein the i-
th observation is a linear function of an intercept, predictor variable(s), and a random
error term. For example, if we had one predictor variable (F), we could write the
model as

yi = α+βFi + vi, (16.1)

where the α is the intercept, β is the regression slope, Fi is the predictor variable
matched to the ith observation (yi), and vi ∼ N(0,r). It is important to note here
that there is no implicit ordering of the index i. That is, we could shuffle any/all of
the (yi,Fi) pairs in our dataset with no effect on our ability to estimate the model
parameters. We can write the model in Equation 16.1 using vector notation, such
that

yi =
[
1 Fi
][α

β

]
+ vi

= F⊤
i θ+ vi, (16.2)

Type RShowDoc("Chapter_UnivariateDLM.R",package="MARSS") at the R command
line to open a file with all the code for the examples in this chapter.
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and F⊤
i =

[
α
β

]
and θ =

[
α β
]⊤.

In a DLM, however, the regression parameters are dynamic in that they evolve
over time. For a single observation at time t, we can write

yt = F⊤
t θt + vt , (16.3)

where Ft is a column vector of regression variables at time t, θt is a column vector
of regression parameters at time t and vt ∼ N(0,r). While seemingly identical, this
formulation presents two features that distinguish it from Equation 16.2. First, the
observed data are explicitly time ordered (i.e., y = {y1,y2,y3, ...,yT }), which means
we expect them to contain implicit information. Second, the relationship between
the observed datum and the predictor variables are unique at every time t (i.e., θ =
{θ1,θ2,θ3, ...,θT }).

However, closer examination of Equation 16.3 reveals an apparent complication
for parameter estimation. With only one datum at each time step t, we could, at best,
estimate only one regression parameter, and even then, the 1:1 correspondence be-
tween data and parameters would preclude any estimation of parameter uncertainty.
To address this shortcoming, we return to the time ordering of model parameters.
Rather than assume the regression parameters are independent from one time step to
another, we instead model them as an autoregressive process where

θt = Gtθt−1 +wt , (16.4)

Gt is the parameter “evolution” matrix, and wt is a vector of process errors, such that
wt ∼ MVN(0,Q). The elements of Gt may be known and fixed a priori, or unknown
and estimated from the data. Although we allow for Gt to be time-varying, we will
typically assume that it is time invariant.

The idea is that the evolution matrix Gt deterministically maps the parameter
space from one time step to the next, so the parameters at time t are temporally
related to those before and after. However, the process is stochastic and the mapping
includes stochastic error, which leads to a degradation of information over time. If
the diagonal elements of Q are relatively large, then the parameters can vary widely
from t to t + 1. If Q = 0, then θ1 = θ2 = θT and we are back to the static model in
Equation 16.1.

16.2 Example of a univariate DLM

Let’s consider an example from the literature. Scheuerell and Williams (2005) used
a DLM to examine the relationship between marine survival of Chinook salmon
and an index of ocean upwelling strength along the west coast of the USA. Up-
welling brings cool, nutrient-rich waters from the deep ocean to shallower coastal
areas. Scheuerell and Williams hypothesized that stronger upwelling in April should
create better growing conditions for phytoplankton, which would then translate into
more zooplankton. In turn, juvenile salmon (“smolts”) entering the ocean in May and
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June should find better foraging opportunities. Thus, for smolts entering the ocean in
year t,

survivalt = αt +βtFt + vt with vt ∼ N(0,r), (16.5)

and Ft is the coastal upwelling index1 for the month of April in year t.
Both the intercept and slope are time varying, so

αt = αt−1 +w(1)
t with w(1)

t ∼ N(0,q1); and (16.6)

βt = βt−1 +w(2)
t with w(2)

t ∼ N(0,q2). (16.7)

If we define θt =
[
αt βt

]⊤, Gt = I for all t, wt =
[
w(1)

t w(2)
t

]⊤
, and Q =

[
q1 0
0 q2

]
, we

get Equation 16.4. If we define yt = survivalt and Ft =
[
1 Ft

]⊤, we can write out the
full univariate DLM as a state-space model with the following form:

θt = Gtθt−1 +wt with wt ∼ MVN(0,Q);

yt = F⊤
t θt + vt with vt ∼ N(0,r);
θ0 ∼ MVN(π0,Λ0).

(16.8)

Equation 16.8 is equivalent to our standard MARSS model:

xt = Btxt−1 +ut +Ctct +wt with wt ∼ MVN(0,Qt);
yt = Ztxt +at +Dtdt +vt with vt ∼ MVN(0,Rt);

x0 ∼ MVN(π,Λ);
(16.9)

where xt = θt , Bt = Gt , ut = Ct = ct = 0, yt = yt (i.e., yt is 1 x 1), Zt = F⊤
t , at =

Dt = dt = 0, and Rt = r (i.e., Rt is 1 x 1).

16.2.1 Fitting a univariate DLM with the {MARSS} package

Now let’s go ahead and analyze the DLM specified in Equations 16.5–16.8. We begin
by getting the data set, which has three columns for 1) the year the salmon smolts mi-
grated to the ocean (year), 2) logit-transformed survival2 (logit.s), and 3) the coastal
upwelling index for April (CUI.apr). There are 42 years of data (1964–2005).

data(SalmonSurvCUI)
years <- SalmonSurvCUI[, 1]
TT <- length(years)
# response data: logit(survival)
dat <- matrix(SalmonSurvCUI[, 2], nrow = 1)

1 cubic meters of seawater per second per 100 m of coastline
2 Survival in the original context was defined as the proportion of juveniles that survive to

adulthood. Thus, we use the logit function, defined as logit(p) = loge(p/[1 − p]), to map
survival from the open interval (0,1) onto the interval (−∞,∞), which allows us to meet our
assumption of normally distributed observation errors.
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As we have seen in other chapters, standardizing our covariate(s) to have zero-
mean and unit-variance can be helpful in model fitting and interpretation. In this case,
it is a good idea because the variance of CUI.apr is orders of magnitude greater than
survival.

CUI <- SalmonSurvCUI[, "CUI.apr"]
CUI.z <- zscore(CUI)
# number of state = # of regression params (slope(s) + intercept)
m <- 1 + 1

Plots of logit-transformed survival and the z-scored April upwelling index are shown
in Figure 16.1.
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Fig. 16.1. Time series of logit-transformed marine survival estimates for Snake River
spring/summer Chinook salmon (top) and z-scores of the coastal upwelling index at 45N
125W (bottom). The x-axis indicates the year that the salmon smolts entered the ocean.

Next, we need to set up the appropriate matrices and vectors for the MARSS()
function. Let’s begin with those for the process equation because they are straight-
forward.

# for process eqn
B <- diag(m) # 2x2; Identity
U <- matrix(0, nrow = m, ncol = 1) # 2x1; both elements = 0
Q <- matrix(list(0), m, m) # 2x2; all 0 for now
diag(Q) <- c("q1", "q2") # 2x2; diag = (q1,q2)

Defining the correct form for the observation model is a little more tricky, how-
ever, because of how we model the effect(s) of explanatory variables. In a DLM, we
need to use Zt (instead of dt ) as the matrix of known regressors (covariates or drivers)
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that affect yt , and xt (instead of Dt ) as the regression parameters. Therefore, we need
to set Zt equal to an n x m x T array, where n is the number of response variables (=
1; yt is univariate), m is the number of regression parameters (= intercept + slope =
2), and T is the length of the time series (= 42).

# for observation eqn
Z <- array(NA, c(1, m, TT)) # NxMxT; empty for now
Z[1, 1, ] <- rep(1, TT) # Nx1; 1's for intercept
Z[1, 2, ] <- CUI.z # Nx1; regr variable
A <- matrix(0) # 1x1; scalar = 0
R <- matrix("r") # 1x1; scalar = r

Lastly, we need to define our lists of initial starting values and model matri-
ces/vectors.

# only need starting values for regr parameters
inits.list <- list(x0 = matrix(c(0, 0), nrow = m))
# list of model matrices & vectors
mod.list <- list(B = B, U = U, Q = Q, Z = Z, A = A, R = R)

And now we can fit our DLM with the MARSS() function.

dlm1 <- MARSS(dat, inits = inits.list, model = mod.list)

Success! abstol and log-log tests passed at 115 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 115 iterations.
Log-likelihood: -40.03813
AIC: 90.07627 AICc: 91.74293

Estimate
R.r 0.15708
Q.q1 0.11264
Q.q2 0.00564
x0.X1 -3.34023
x0.X2 -0.05388
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

Notice that the MARSS() output does not list any estimates of the regression pa-
rameters themselves. Why not? Remember that in a DLM the states (x) are the esti-
mates of the regression parameters (θ). Therefore, we need to look in dlm1$states
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for the MLEs of the regression parameters, and in dlm1$states.se for their stan-
dard errors.

Time series of the estimated intercept and slope are shown in Figure 16.2. It
appears as though the intercept is much more dynamic than the slope, as indicated by
a much larger estimate of process variance for the former (Q.q1). In fact, although
the effect of April upwelling appears to be increasing over time, it doesn’t really
become important as an explanatory variable until about 1990 when the approximate
95% confidence interval for the slope no longer overlaps zero.
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Fig. 16.2. Time series of estimated mean states (thick lines) for the intercept (top) and slope
(bottom) parameters from the univariate DLM specified by Equations 16.5–16.8. Thin lines
denote the mean ± 2 standard deviations.

16.3 Forecasting with a univariate DLM

Scheuerell and Williams (2005) were interested in how well upwelling could be used
to forecast expected survival of salmon. Let’s look at how well our model does in that
context. To do so, we need the predictive distributions for the regression parameters
and observation.

Beginning with our definition for the distribution of the parameters at time t = 0,
θ0 ∼ MVN(π0,Λ0) in Equation 16.8, we write

θt−1|yt−1
1 ∼ MVN(πt−1,Λt−1) (16.10)

to indicate the distribution of θ at time t −1 conditioned on the observed data through
time t − 1 (i.e., yt−1

1 ). Then, we can write the one-step ahead predictive distribution
for θt given yt−1

1 as
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θt |yt−1
1 ∼ MVN(ηt ,Φt), where
ηt = Gtπt−1, and (16.11)

Φt = GtΛt−1G⊤
t +Q.

Consequently, the one-step ahead predictive distribution for the observation at time t
given yt−1

1 is

yt |yt−1
1 ∼ N(ζt ,Ψt), where
ζt = Ftηt , and (16.12)

Ψt = FtΦtF⊤
t +R.

16.3.1 Forecasting a univariate DLM with the {MARSS} package

Working from Equation 16.12, we can now use the {MARSS} package to com-
pute the expected value of the forecast at time t (E[yt |yt−1

1 ] = ζt), and its variance
(var[yt |yt−1

1 ] = Ψt). For the expectation, we need Ftηt . Recall that Ft is our 1 × m
matrix of explanatory variables at time t (Ft is called Zt in {MARSS} notation). The
one-step ahead forecasts of the parameters at time t (ηt) are calculated as part of the
Kalman filter algorithm—they are termed xt−1

t in {MARSS} notation and stored as
xtt1 in the list produced by the MARSSkf() function.

# get list of Kalman filter output
kf.out <- MARSSkfss(dlm1)
# forecasts of regr parameters; 2xT matrix
eta <- kf.out$xtt1
# ts of E(forecasts)
fore.mean <- vector()
for (t in 1:TT) {
fore.mean[t] <- Z[, , t] %*% eta[, t, drop = F]

}

For the variance of the forecasts, we need FtΦtF⊤
t + R. As with the mean, Ft ≡

Zt . The variances of the one-step ahead forecasts of the parameters at time t (Φt) are
also calculated as part of the Kalman filter algorithm—they are stored as Vtt1 in the
list produced by the MARSSkf() function. Lastly, the observation variance R is part
of the standard MARSS output.

# variance of regr parameters; 1x2xT array
Phi <- kf.out$Vtt1
# obs variance; 1x1 matrix
R.est <- coef(dlm1, type = "matrix")$R
# ts of Var(forecasts)
fore.var <- vector()
for (t in 1:TT) {
tZ <- matrix(Z[, , t], m, 1) # transpose of Z
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fore.var[t] <- Z[, , t] %*% Phi[, , t] %*% tZ + R.est
}

Plots of the model mean forecasts with their estimated uncertainty are shown in
Figure 16.3. Nearly all of the observed values fell within the approximate prediction
interval. Notice that we have a forecasted value for the first year of the time series
(1964), which may seem at odds with our notion of forecasting at time t based on
data available only through time t − 1. In this case, however, MARSS() is estimated
the states at t = 0 (θ0), which allows us to compute a forecast for the first time point.
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Fig. 16.3. Time series of logit-transformed survival data (blue dots) and model mean one-step
ahead forecasts (thick line). Thin lines denote the approximate 95% prediction intervals.

Although our model forecasts look reasonable in logit-space, it is worthwhile
to examine how well they look when the survival data and forecasts are back-
transformed onto the interval [0,1] (Figure 16.4). In that case, the accuracy does
not seem to be affected, but the precision appears much worse, especially during the
early and late portions of the time series when survival is changing rapidly.
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Fig. 16.4. Time series of survival data (blue dots) and model mean forecasts (thick line). Thin
lines denote the approximate 95% prediction intervals.

16.3.2 DLM forecast diagnostics

As with other time series models, evaluation of a DLM should include model diag-
nostics. In a forecasting context, we are often interested in the forecast errors, which
are simply the observed data minus the forecasts (et = yt − ζt). In particular, the
following assumptions should hold true for et :

1. et ∼ N(0,σ2);
2. cov(et ,et−k) = 0.

In the literature on state-space models, the set of et are commonly referred to
as “innovations”. The innovations as part of the Kalman filter algorithm—they are
stored as Innov in the list produced by the MARSSkfss() function3.

# forecast errors
innov <- kf.out$Innov

Let’s see if our innovations meet the model assumptions. Beginning with (1), we
can use a Q-Q plot to see whether the innovations are normally distributed with a
mean of zero. We will use the qqnorm() function to plot the quantiles of the innova-
tions on the y-axis versus the theoretical quantiles from a Normal distribution on the
x-axis. If the two distributions are similar, the points should fall on the line defined
by y = x.

# Q-Q plot of innovations
qqnorm(t(innov), main = "", pch = 16, col = "blue")
# add y=x line for easier interpretation
qqline(t(innov))

3 We need to use the Shumway and Stoffer Kalman filter instead of the {KFAS} Kalman
filter.
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Fig. 16.5. Q-Q plot of the forecast errors (innovations) for the DLM specified in Equations
16.5 to 16.8.

The Q-Q plot (Figure 16.5) indicates that the innovations appear to be more-or-
less normally distributed (i.e., most points fall on the line). Furthermore, it looks like
the mean of the innovations is about 0, but we should use a more reliable test than
simple visual inspection. We can formally test whether the mean of the innovations is
significantly different from 0 by using a one-sample t-test. based on a null hypothesis
of E[et ] = 0. To do so, we will use the function t.test() and base our inference on
a significance value of α = 0.05.

# p-value for t-test of H0: E(innov) = 0
t.test(t(innov), mu = 0)$p.value

[1] 0.4840901

The p-value >> 0.05 so we cannot reject the null hypothesis that E[et ] = 0.
Moving on to assumption (2), we can use the sample autocorrelation function

(ACF) to examine whether the innovations are autocorrelated (they should not be).
Using the acf() function, we can compute and plot the correlations of et and et−k for
various values of k. Assumption (2) will be met if none of the correlation coefficients
exceed the 95% confidence intervals defined by ±z0.975/

√
n.

# plot ACF of innovations
acf(t(innov), lag.max = 10)

The ACF plot (Figure 16.6) shows no significant autocorrelation in the innovations
at lags 1–10, so it appears that both of our model assumptions have been met.
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Fig. 16.6. Autocorrelation plot of the forecast errors (innovations) for the DLM specified in
Equations 16.5 to 16.8. Horizontal blue lines define the upper and lower 95% confidence
intervals.
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Multivariate linear regression

This chapter shows how to write regression models with multivariate responses
and multivariate explanatory variables in MARSS form. R has many excellent func-
tions and packages for multiple linear regression. We will be showing how to use the
MARSS() function to fit these models, but note that R ’s standard linear regression
functions would be much better choices in most cases. The purpose of this chapter
is to show the relationship between multivariate linear regression and the MARSS
equation.

In a classic linear regression, the response variable (y) is univariate and there may
be one to multiple explanatory variables (d1, d2, . . . ) plus an optional intercept (α):

yt = α+∑
k

βkdk + et , where et ∼ N(0,σ2) (17.1)

Here the subscript, t is used since we are working with time-series data. Explanatory
variables are normally denoted x in linear regression however x is not used here since
x is already used in MARSS models to denote the hidden process trajectory. Instead
d is used when the explanatory variables appear in the y part of the equation (and c
if they appear in the x part).

This chapter will start with classical linear regression where the explanatory vari-
ables are treated as inputs that are known without error and where we are trying to
explain the variation in y with our explanatory variables. We will extend this to the
case of autocorrelated errors.

17.1 Univariate linear regression

A vanilla linear regression where our data are time ordered but we treat them as
independent can be written as

Type RShowDoc("Chapter_MLR.R",package="MARSS") at the R command line to open
a file with all the code for the examples in this chapter.
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yt = α+β1d1,t +β2d2,t + et , (17.2)

where the d are our explanatory variables. This model can be written in many dif-
ferent ways in as a MARSS equation. Here we use a specific form where the i.i.d.
component of the errors is vt in the y part of the MARSS equation and autocorrelated
errors will appear as xt in the y equation. Specifying the MARSS model this way
allows us to use the EM-algorithm to fit the model which will prove to be important.

yt = α+
[
β1 β2 . . .

]



d1,t
d2,t

...


+ vt + xt ,vt ∼ N(0,r)

xt = bxt−1 +wt ,wt N(0,q)

x0 = 0

(17.3)

The vt are the i.i.d. errors and the xt are the AR(1) errors.

17.1.1 Univariate response using the Longley dataset: example 1

We will start by using an example from Chapter 6 in Linear Models in R (Faraway,
2004). This example uses the built-in R dataset “longley" which has the number of
people employed from 1947 to 1962 and a number of predictors. For this example
we will regress the number of people employed against gross National product and
population size (following Faraway).

Mathematically, the model we are fitting is

Employedt = α+
[
βGNP βPop

][GNPt
Popt

]
+ vt ,vt ∼ N(0,r) (17.4)

x does not appear in the vanilla linear regression since we do not have autocorrelated
errors (yet). We are trying to estimate α (intercept), βGNP and βPop.

A full multivariate MARSS model looks like

yt = Zxt +a+Ddt +vt , where vt ∼ MVN(0,R)

xt = Bxt−1 +u+Cct +wt , where wt ∼ MVN(0,Q)
(17.5)

We need to specify the parameters in Equation 17.5 such that we get Equation 17.4.
First, we load the data and set up y, the response variable number of people

employed, as a matrix with time going across the columns.

data(longley)
Employed <- matrix(longley$Employed, nrow = 1)

Second create a list to hold our model specification.

longley.model <- list()

Set the u, Q and x0 parameters to 0. We will also set a and C to 0 and B and Z to
identity although this is not necessary since these are the defaults.
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Fig. 17.1. Employment time series from the Longley dataset.

longley.model$U <- longley.model$Q <- "zero"
longley.model$C <- "zero"
longley.model$B <- longley.model$Z <- "identity"
longley.model$x0 <- "zero"
longley.model$tinitx <- 0

We will estimate R, the variance of the i.i.d. errors (residuals).

longley.model$R <- matrix("r")

The D matrix has the two β (slope) parameters for GNP and Population and a has
the intercept.1

longley.model$A <- matrix("intercept")
longley.model$D <- matrix(c("GNP", "Pop"), nrow = 1)

1 A better way to fit the model is to put the intercept into D by adding a row of 1s to d and
putting the intercept parameter on the first row of D. This reduces by one the number of
matrices being estimated by the EM algorithm. It’s not done here just so the equations look
more like standard linear regression equations.
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Last we set up our explanatory variables. This is the d matrix and we need each
explanatory variable in a row with time across the columns.

longley.model$d <- rbind(longley$GNP, longley$Population)

Now we can fit the model:

mod1 <- MARSS(Employed, model = longley.model)

and look at the estimates.

coef(mod1, type = "vector")

method="BFGS" can also be used and gives similar results.
We can compare the fit to that from lm() and see that we get the same estimates:

mod1.lm <- lm(Employed ~ GNP + Population, data = longley)
coef(mod1.lm)

(Intercept) GNP Population
88.93879831 0.06317244 -0.40974292

17.1.2 Univariate response using auto-correlated errors: example 1

As Faraway (2004) discusses, the errors in this dataset are temporally correlated. We
can model the errors as an AR(1) process to account for this. This changes our model
to

Employedt = α+
[
βGNP βPop

][GNPt
Popt

]
+ vt + xt ,vt ∼ N(0,r)

xt = bxt−1 +wt ,wt ∼ N(0,q)

x0 = 0

(17.6)

We assume the AR(1) errors have mean 0 so u = 0 in the xt equation. Setting u to
anything else would make the mean of our errors equal to u/(1−b) for −1 < b < 1.
This would lead to two mean levels in our model, α and u/(1 − b), and we would
not be able to estimate both. Notice that the model is somewhat confounded since if
b = 0 then xt is i.i.d. errors same as vt . In this case, either q or r would be redundant.
It is thus possible that either r or q will go to zero.

To fit the model with autoregressive errors, we add the x parameters to our the
model list. We estimate b and q.

longley.ar1 <- longley.model
longley.ar1$B <- matrix("b")
longley.ar1$Q <- matrix("q")

Now we can fit the model as before

mod2 <- MARSS(Employed, model = longley.ar1)
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however, this is a difficult model to fit and takes a long, long time to converge.
The default maxit used in the call above is not nearly enough iterations. Using
method="BFGS" helps a little but not much. We can improve behavior by using the
fit of the model with i.i.d. errors as initial conditions for D and a.

inits <- list(A = coef(mod1)$A, D = coef(mod1)$D)
mod2 <- MARSS(Employed,
model = longley.ar1, inits = inits,
control = list(maxit = 1000)

)
ests.marss <- c(
b = coef(mod2)$B, alpha = coef(mod2)$A,
GNP = coef(mod2)$D[1], Population = coef(mod2)$D[2],
logLik = logLik(mod2)

)

We can the fit the same model using gls() (in the {nlme} package). The b term
is called Phi in the gls() call and is somewhat difficult to recover although it is
printed by summary().

library(nlme)
mod2.gls <- gls(Employed ~ GNP + Population,
correlation = corAR1(), data = longley, method = "ML"

)
mod2.gls.phi <- coef(mod2.gls$modelStruct[[1]], unconstrained = FALSE)
ests.gls <- c(
b = mod2.gls.phi, alpha = coef(mod2.gls)[1],
GNP = coef(mod2.gls)[2], Population = coef(mod2.gls)[3],
logLik = logLik(mod2.gls)

)

Note we need to set method="ML" to maximize the likelihood because the default is
to maximize the restricted maximum-likelihood (method="REML") and that gives a
different answer from the MARSS() function since MARSS() is maximizing the likeli-
hood.

Both functions return similar values though gls() is much faster and the EM
algorithm has not quite converged even with 1000 iterations.

rbind(MARSS = ests.marss, GLS = ests.gls)

b alpha GNP Population logLik
MARSS 0.3509377 95.36017 0.06748567 -0.4784003 -10.53742
GLS 0.3651196 96.09369 0.06822305 -0.4871554 -10.47396

17.1.3 Univariate response using the Longley dataset: example 2

The full Longley dataset is often used to test the performance of numerical methods
for fitting linear regression models because it has severe collinearity problems (Fig-
ure 17.2). We can compare the EM and BFGS algorithms for the full dataset and see
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how fitting a MARSS model with the BFGS algorithm leads to estimates far from
the maximum-likelihood values for this problem.
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Fig. 17.2. Pairs plot showing collinearity in the Longley explanatory variables.

We can fit a regression of Employed to all the Longley explanatory variables
using the following code. The mathematical model is the same as in Equation 17.4
except that instead of two explanatory variables with have all seven shown in Figure
17.2.

eVar.names <- colnames(longley)[-7]
eVar <- t(longley[, eVar.names])
longley.model <- list()
longley.model$U <- longley.model$Q <- "zero"
longley.model$C <- "zero"
longley.model$B <- longley.model$Z <- "identity"
longley.model$A <- matrix("intercept")
longley.model$R <- matrix("r")
longley.model$D <- matrix(eVar.names, nrow = 1)
longley.model$d <- eVar
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longley.model$x0 <- "zero"
longley.model$tinitx <- 0

Then we fit as usual. We will fit with the EM-algorithm (the default) and compare
to BFGS.

mod3.em <- MARSS(Employed, model = longley.model)
mod3.bfgs <- MARSS(Employed, model = longley.model, method = "BFGS")

Here are the EM estimates with the log-likelihood.

par.names <- c("A.intercept", paste("D", eVar.names, sep = "."))
c(coef(mod3.em, type = "vector")[par.names], logLik = mod3.em$logLik)

A.intercept D.GNP.deflator D.GNP D.Unemployed
-3.482258e+03 1.506187e-02 -3.581917e-02 -2.020230e-02
D.Armed.Forces D.Population D.Year logLik
-1.033227e-02 -5.110413e-02 1.829151e+00 9.066497e-01

Compared to the BFGS estimates:

c(coef(mod3.bfgs, type = "vector")[par.names], logLik = mod3.bfgs$logLik)

A.intercept D.GNP.deflator D.GNP D.Unemployed
-14.062101213 -0.052705201 0.070642032 -0.004298481
D.Armed.Forces D.Population D.Year logLik
-0.005744197 -0.412771921 0.055610013 -6.996818714

And compared to the estimates from the lm() function:

mod3.lm <- lm(Employed ~ 1 + GNP.deflator + GNP + Unemployed
+ Armed.Forces + Population + Year, data = longley)

c(coef(mod3.lm), logLik = logLik(mod3.lm))

(Intercept) GNP.deflator GNP Unemployed
-3.482259e+03 1.506187e-02 -3.581918e-02 -2.020230e-02
Armed.Forces Population Year logLik
-1.033227e-02 -5.110411e-02 1.829151e+00 9.066497e-01

As you can see the BFGS algorithm struggles with the ridge-like likelihood caused
by the collinearity in the explanatory variables.

We can also compare the performance of the model with AR(1) errors. This is
Equation 17.6 but with all seven explanatory variables. We set up the MARSS model2

for a linear regression with correlated errors as before with the addition of b (called
Phi in gls()) and q.

2 Notice that x0 is set at 0. The model is having a hard time fitting x0 because the time series
is short. Estimating x0 or using a diffuse prior by setting V0 big, leads to poor estimates.
Since this is just the error term, we set x0 = 0 since the mean of the errors is assumed to be
0.
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longley.correrr.model <- longley.model
longley.correrr.model$B <- matrix("b")
longley.correrr.model$Q <- matrix("q")

We fit as usual and compare the EM-algorithm (the default) to fits using BFGS.
We will use the estimate from the model with i.i.d. errors as initial conditions.

inits <- list(A = coef(mod3.em)$A, D = coef(mod3.em)$D)
mod4.em <- MARSS(Employed, model = longley.correrr.model, inits = inits)
mod4.bfgs <- MARSS(Employed,
model = longley.correrr.model,
inits = inits, method = "BFGS"

)

Here are the EM estimates with the log-likelihood. We only show φ (the b term in
the AR(1) error equation) and the log-likelihood.

c(coef(mod4.em, type = "vector")["B.b"], logLik = mod4.em$logLik)

B.b logLik
-0.7737465 4.5374546

Compared to the BFGS estimates:

c(coef(mod4.bfgs, type = "vector")["B.b"], logLik = mod4.bfgs$logLik)

B.b logLik
0.8368899 0.9066497

And compared to the estimates from the gls() function:

mod4.gls <- gls(Employed ~ 1 + GNP.deflator + GNP + Unemployed
+ Armed.Forces + Population + Year,

correlation = corAR1(), data = longley, method = "ML"
)
mod4.gls.phi <- coef(mod4.gls$modelStruct[[1]], unconstrained = FALSE)
c(mod4.gls.phi, logLik = logLik(mod4.gls))

Phi logLik
-0.7288684 4.3865475

Again we see that the BFGS algorithm struggles with the ridge-like likelihood caused
by the collinearity in the explanatory variables.

17.2 Multivariate response example using longitudinal data

We will illustrate linear regression with a multivariate response using longitudinal
data from a sleep study on 18 subjects from the {lme4} R package. These are data
on reaction time of subjects after 0 to 9 days of being restricted to 3 hours of sleep.

We load the data from the {lme4} package:
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Fig. 17.3. Plot of the sleep study data (package lme4).

data(sleepstudy, package = "lme4")

We set up the data into a matrix for the MARSS() function with each subject as a
row with day across the columns. The explanatory variable is the the day number 0
to 9 and we make this into a matrix with one row and day across the columns.

# number of subjects
nsub <- length(unique(sleepstudy$Subject))
ndays <- length(sleepstudy$Days) / nsub
dat <- matrix(sleepstudy$Reaction, nsub, ndays, byrow = TRUE)
rownames(dat) <- paste("sub", unique(sleepstudy$Subject), sep = ".")
exp.var <- matrix(sleepstudy$Days, 1, ndays, byrow = TRUE)

Let’s start with a simple regression where each subject has a separate intercept
(reaction time at day 0) but the slope (increase in reaction time with each successive
day) is the same across the 18 subjects. Mathematically the model is
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The response time of subject i is a subject specific intercept (αi) plus an effect of day
at time t that doesn’t vary by subject and error that is i.i.d. across subject and day.

We specify and fit this model as follows

sleep.model <- list(
A = "unequal", B = "zero", x0 = "zero", U = "zero",
D = matrix("b1", nsub, 1), d = exp.var, tinitx = 0, Q = "zero"

)
sleep.mod1 <- MARSS(dat, model = sleep.model)

This is the same as the following with lm():

sleep.lm1 <- lm(Reaction ~ -1 + Subject + Days, data = sleepstudy)

Now let’s allow each subject to have different slopes (increase in reaction time
with each successive day) across subjects. This model is
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We specify and fit this model as

sleep.model <- list(
A = "unequal", B = "zero", x0 = "zero", U = "zero",
D = "unequal", d = exp.var, tinitx = 0, Q = "zero"

)
sleep.mod2 <- MARSS(dat, model = sleep.model, silent = TRUE)

This is the same as the following with lm():

sleep.lm2 <- lm(Reaction ~ 0 + Subject + Days:Subject, data = sleepstudy)

We can repeat the above but allow the residual variance to differ across subjects
by setting R="diagonal and unequal". This model is
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sleep.model <- list(
A = "unequal", B = "zero", x0 = "zero", U = "zero",
D = "unequal", d = exp.var, tinitx = 0, Q = "zero",
R = "diagonal and unequal"

)
sleep.mod3 <- MARSS(dat, model = sleep.model, silent = TRUE)

Or we can allow AR(1) errors across subjects and allow each subject to have its
own AR(1) parameters for this error. This model is
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We fit this model as

inits <- list(A = coef(sleep.mod3)$A, D = coef(sleep.mod3)$D)
# estimate a separate intercept for each but slope is the same
sleep.model <- list(
A = "unequal", B = "diagonal and unequal", x0 = "zero", U = "zero",
D = "unequal", d = exp.var, tinitx = 0, Q = "diagonal and unequal",
R = "diagonal and unequal"

)
sleep.mod4 <- MARSS(dat, model = sleep.model, inits = inits, silent = TRUE)
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It is not obvious how to specify these last two models using gls() or if it is possible.
We can also allow each subject to have his/her own error process but specify that

the parameters of these (b, q and r) are the same across subjects. We do this by using
"diagonal and equal". Mathematically this model is
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We specify and fit this model as

inits <- list(A = coef(sleep.mod3)$A, D = coef(sleep.mod3)$D)
# estimate a separate intercept for each but slope is the same
sleep.model <- list(
A = "unequal", B = "diagonal and equal", x0 = "zero", U = "zero",
D = "unequal", d = exp.var, tinitx = 0, Q = "diagonal and equal",
R = "diagonal and equal"

)
sleep.mod5 <- MARSS(dat, model = sleep.model, inits = inits, silent = TRUE)

This is fairly close to this model fit with gls().

sleep.mod5.gls <- gls(Reaction ~ 0 + Subject + Days:Subject,
data = sleepstudy,
correlation = corAR1(form = ~ 1 | Subject), method = "ML"

)

The way the variance-covariance structure is modeled is a little different but it is the
same idea.

17.3 Discussion

The purpose of this chapter is to illustrate how linear regression models with multi-
variate explanatory variables can be written in MARSS form and fit with the MARSS()
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Table 17.1. Parameter estimates of different versions of the model where each subject has
a separate intercept (response time on normal sleep) and different slope by day (increase in
response time with each day of sleep deprivation). The model types are discussed in the text.

lm mod2 em mod3 em mod4 em mod5 em mod5 gls
logLik -818.94 -818.94 -770.19 -754.97 -818.76 -818.55

slope 308 21.76 21.76 21.76 21.77 21.83 21.87
slope 309 2.26 2.26 2.26 1.43 2.24 2.23
slope 310 6.11 6.11 6.11 6.12 6.10 6.08
slope 330 3.01 3.01 3.01 2.93 3.01 3.04
slope 331 5.27 5.27 5.27 3.59 5.36 5.46
slope 332 9.57 9.57 9.57 8.55 9.39 9.21
slope 333 9.14 9.14 9.14 8.85 9.12 9.12
slope 334 12.25 12.25 12.25 11.73 12.24 12.26
slope 335 -2.88 -2.88 -2.88 -3.19 -2.82 -2.77
slope 337 19.03 19.03 19.03 19.09 18.95 18.90
slope 349 13.49 13.49 13.49 12.14 13.47 13.46
slope 350 19.50 19.50 19.50 18.21 19.38 19.28
slope 351 6.43 6.43 6.43 6.15 6.54 6.64
slope 352 13.57 13.57 13.57 19.20 13.71 13.80
slope 369 11.35 11.35 11.35 11.41 11.32 11.31
slope 370 18.06 18.06 18.06 18.31 18.01 17.97
slope 371 9.19 9.19 9.19 9.56 9.23 9.28
slope 372 11.30 11.30 11.30 11.45 11.28 11.26
phi 308 0.02 0.12 0.08
phi 309 0.63 0.12 0.08
phi 310 -0.01 0.12 0.08
phi 330 0.32 0.12 0.08
phi 331 -1.66 0.12 0.08
phi 332 0.26 0.12 0.08
phi 333 -1.04 0.12 0.08
phi 334 0.51 0.12 0.08
phi 335 -0.40 0.12 0.08
phi 337 -0.08 0.12 0.08
phi 349 0.80 0.12 0.08
phi 350 0.32 0.12 0.08
phi 351 -0.15 0.12 0.08
phi 352 0.80 0.12 0.08
phi 369 -0.25 0.12 0.08
phi 370 -0.44 0.12 0.08
phi 371 0.63 0.12 0.08
phi 372 -0.47 0.12 0.08
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function3. This is to help one understand the relationship between the MARSS model
form and the more familiar multivariate linear model forms. Obviously R has many,
many excellent packages for linear regression and generalized linear regression (non-
Gaussian errors). While the {MARSS} package can fit a variety of linear regression
models with Gaussian errors, that is not what the package is designed to do. The
{MARSS} package is designed for fitting models that cannot be fit with typical linear
regression: multivariate autoregressive state-space models with inputs (explanatory
variables) and linear constraints.

3 with caveat that one must always be careful when the likelihood surface has prominent
ridges which will occur with collinear explanatory variables.
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Lag-p MARSS models

18.1 Background

Most of the chapters in the User Guide are ‘lag-1’ in the autoregressive part of the
model. This means that xt in the process model only depends on xt−1 and not xt−2
(lag-2) or more generally xt−p (lag-p). A lag-p model can be written in state-space
form as a MARSS lag-1 model, aka a MARSS(1) model (see section 11.3.2 in Tsay
(2010)). Writing lag-p models in this form allows one to take advantage of the fitting
algorithms for MARSS(1) models. There are a number of ways to do the conver-
sion to a MARSS(1) form. We use Hamilton’s form (section 1 in Hamilton (1994))
because it can be fit with an EM algorithm while the other forms (Harvey’s and
Akaike’s) cannot.

This chapter shows how to convert and fit the following using the MARSS(1)
form:

AR(p) A univariate autoregressive model where xt is a function of xt−p (and the
prior lags usually too). No observation error.

MAR(p) The same as AR(p) but the x term is multivariate not univariate.
ARSS(p) The same as AR(p) but with a observation model and observation error.

The observations (y) may be multivariate but the x term is univariate.
MARSS(p) The same as ARSS(p) but the x term is multivariate not univariate.

Note that only ARSS(p) and MARSS(p) assume observation error in the data. AR(p)
and MAR(p) will be rewritten in the state-space form with a y component to facilitate
statistical analysis but the data themselves are considered error free.

Note there are many R packages for fitting AR(p) (and ARMA(p,q) for that mat-
ter) models. If you are only interested in univariate data with no observation error in

Type RShowDoc("Chapter_MARp.R",package="MARSS") at the R command line to open
a file with all the code for the examples in this chapter.
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the data then you probably want to look into the arima() function included in base
R and into R packages that specialize in fitting ARMA models to univariate data.
The {forecast} package in R is a good place to start but others can be found on the
CRAN task view: Time Series Analysis.

18.2 MAR(2) models

A MAR(2) model is a lag-2 MAR model, aka a multivariate autoregressive process
with no observation process (no SS part). A MAR(2) model is written

x′
t = B1x′

t−1 +B2x′
t−2 +u+wt , where wt ∼ MVN(0,Q) (18.1)

We rewrite this as MARSS(1) by defining xt =

[
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t
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(18.2)

Our observations are of xt only, so our observation model is

yt =
[
I 0
][ x′

t
x′

t−1

]
(18.3)

18.2.1 Example of AR(2): univariate data

Here is an example of fitting a univariate AR(2) model written in MARSS(1) form.
First, let’s generate some simulated AR(2) data from this AR(2) process:

xt = −1.5xt−1 +−0.75xt−2 +wt , where wt ∼ N(0,1) (18.4)

TT <- 50
true.2 <- c(r = 0, b1 = -1.5, b2 = -0.75, q = 1)
temp <- arima.sim(n = TT, list(ar = true.2[2:3]), sd = sqrt(true.2[4]))
sim.ar2 <- matrix(temp, nrow = 1)

Next, we set up the model list for an AR(2) model written in MARSS(1) form
(refer to Equation 18.2 and 18.3):

Z <- matrix(c(1, 0), 1, 2)
B <- matrix(list("b1", 1, "b2", 0), 2, 2)
U <- matrix(0, 2, 1)
Q <- matrix(list("q", 0, 0, 0), 2, 2)
A <- matrix(0, 1, 1)
R <- matrix(0, 1, 1)
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mu <- matrix(sim.ar2[2:1], 2, 1)
V <- matrix(0, 2, 2)
model.list.2 <- list(
Z = Z, B = B, U = U, Q = Q, A = A,
R = R, x0 = mu, V0 = V, tinitx = 0

)

Notice that we do not estimate µ. We will fit our model to the data (y) starting at t = 3.

Because R = 0, this means E[Xt |yt ] = xt
t = yt and x0

0 ≡
[

y2
y1

]
. Note E[Xt |yt−1] =

xt−1
t ̸= yt so we do not use x0

1 as our initial x.
Then we can then estimate the b1 and b2 parameters for the AR(2) process.

ar2 <- MARSS(sim.ar2[3:TT], model = model.list.2)

Success! algorithm run for 15 iterations. abstol and log-log tests passed.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.

MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Algorithm ran 15 (=minit) iterations and convergence was reached.
Log-likelihood: -63.02523
AIC: 132.0505 AICc: 132.5959

Estimate
B.b1 -1.582
B.b2 -0.777
Q.q 0.809
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

Comparison to the true values shows the estimates are close:

print(cbind(true = true.2[2:4], estimates = coef(ar2, type = "vector")))

true estimates
b1 -1.50 -1.5816137
b2 -0.75 -0.7767462
q 1.00 0.8091055

Missing values in the data are fine. Let’s make half the data missing being careful
that the first data point does not get categorized as missing. MARSSkfss() is used
as the Kalman filter/smoother function as this is a model where MARSSkfas() can
return negative values on the states variance-covariance matrix.
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gappy.data <- sim.ar2[3:TT]
gappy.data[floor(runif(TT / 2, 2, TT))] <- NA
ar2.gappy <- MARSS(gappy.data, model = model.list.2, fun.kf="MARSSkfss")

And the estimates are still close:

print(cbind(
true = true.2[2:4],
estimates.no.miss = coef(ar2, type = "vector"),
estimates.w.miss = coef(ar2.gappy, type = "vector")

))

true estimates.no.miss estimates.w.miss
b1 -1.50 -1.5816137 -1.5549387
b2 -0.75 -0.7767462 -0.7463820
q 1.00 0.8091055 0.8868251

By the way, there are much better and faster functions in R for fitting univariate
AR models (no observation error). The {MARSS} package is really for fitting to
multivariate data with observation error not AR(p) models. For example, here is how
you would fit the AR(2) model using the arima() function:

arima(gappy.data, order = c(2, 0, 0), include.mean = FALSE)

Call:
arima(x = gappy.data, order = c(2, 0, 0), include.mean = FALSE)

Coefficients:
ar1 ar2

-1.5674 -0.7494
s.e. 0.1033 0.1015

sigma^2 estimated as 0.9428: log likelihood = -51.81, aic = 109.62

The estimates will be different because arima() sets x0
1 as coming from the station-

ary distribution. That is a non-linear constraint that MARSS() cannot handle.
The assumption that x0

1 comes from the stationary distribution is fine if the initial
x indeed comes from the stationary distribution, but if the initial x is well outside the
stationary distribution the estimates will be incorrect.

TT <- 50
true.2 <- c(r = 0, b1 = -1.5, b2 = -0.75, q = 1)
sim.ar2.ns <- rep(NA, TT)
sim.ar2.ns[1] <- -30
sim.ar2.ns[2] <- -10
for (i in 3:TT) {
sim.ar2.ns[i] <- true.2[2] * sim.ar2.ns[i - 1] +

true.2[3] * sim.ar2.ns[i - 2] + rnorm(1, 0, sqrt(true.2[4]))



18.2 MAR(2) models 241

}
model.list.3 <- model.list.2
model.list.3$x0 <- matrix(sim.ar2.ns[2:1], 2, 1)
ar3.marss <- MARSS(sim.ar2.ns[3:TT], model = model.list.3, silent = TRUE)
ar3.arima <- arima(sim.ar2.ns[3:TT], order = c(2, 0, 0), include.mean = FALSE)
print(cbind(
true = true.2[2:4],
estimates.marss = coef(ar3.marss, type = "vector"),
estimates.arima = c(coef(ar3.arima, type = "vector"), ar3.arima$sigma2)

))

true estimates.marss estimates.arima
b1 -1.50 -1.5037048 -1.7490942
b2 -0.75 -0.7464002 -0.9856986
q 1.00 1.3551075 3.0661061

18.2.2 Example of MAR(2): multivariate data

Here we show an example of fitting a MAR(2) model. Let’s make some simulated
data of two realizations of the same AR(2) process:

TT <- 50
true.2 <- c(r = 0, b1 = -1.5, b2 = -0.75, q = 1)
temp1 <- arima.sim(n = TT, list(ar = true.2[c("b1", "b2")]),

sd = sqrt(true.2["q"]))

temp2 <- arima.sim(n = TT, list(ar = true.2[c("b1", "b2")]),
sd = sqrt(true.2["q"]))

sim.mar2 <- rbind(temp1, temp2)

Although these are independent time series, we want to fit with a MAR(2) model
to allow us to use both datasets together to estimate the AR(2) parameters. We need
to set up the model list for the multivariate model (Equation 18.2 and 18.3):

Z <- matrix(c(1, 0, 0, 1, 0, 0, 0, 0), 2, 4)
B1 <- matrix(list(0), 2, 2)
diag(B1) <- "b1"
B2 <- matrix(list(0), 2, 2)
diag(B2) <- "b2"
B <- matrix(list(0), 4, 4)
B[1:2, 1:2] <- B1
B[1:2, 3:4] <- B2
B[3:4, 1:2] <- diag(1, 2)
U <- matrix(0, 4, 1)
Q <- matrix(list(0), 4, 4)
Q[1, 1] <- "q"
Q[2, 2] <- "q"
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A <- matrix(0, 2, 1)
R <- matrix(0, 2, 2)
pi <- matrix(c(sim.mar2[, 2], sim.mar2[, 1]), 4, 1)
V <- matrix(0, 4, 4)
model.list.2m <- list(
Z = Z, B = B, U = U, Q = Q, A = A,
R = R, x0 = pi, V0 = V, tinitx = 1

)

Notice the form of the Z matrix:

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0

It is a 2 × 2 identity matrix followed by a 2 × 2 all-zero matrix. The B matrix is
composed of B1 and B2 which are diagonal matrices with b1 and b2 respectively on
the diagonal.

[,1] [,2] [,3] [,4]
[1,] "b1" 0 "b2" 0
[2,] 0 "b1" 0 "b2"
[3,] 1 0 0 0
[4,] 0 1 0 0

We fit the model as usual:

mar2 <- MARSS(sim.mar2[, 2:TT], model = model.list.2m)

Then we can compare how using two time series improves the fit versus using only
one alone:

model.list.2$x0 <- matrix(sim.mar2[1, 2:1], 2, 1)
mar2a <- MARSS(sim.mar2[1, 2:TT], model = model.list.2)
model.list.2$x0 <- matrix(sim.mar2[2, 2:1], 2, 1)
mar2b <- MARSS(sim.mar2[2, 2:TT], model = model.list.2)

true est.mar2 est.mar2a est.mar2b
b1 -1.50 -1.4206301 -0.7209367 -1.3506409
b2 -0.75 -0.7642604 -0.3954671 -0.6953739
q 1.00 0.8986820 3.2098084 1.5552943

18.3 MAR(p) models

A MAR(p) model is similar to a MAR(2) except it has lags up to time p:

x′
t = B1x′

t−1 +B2x′
t−2 + · · ·+Bpx′

t−p +u′ +w′
t , where w′

t ∼ MVN(0,Q′)

where



18.3 MAR(p) models 243
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Here’s an example of fitting a univariate AR(3) in MARSS(1) form. We need
more data to estimate an AR(3), so use 100 time steps.

TT <- 100
true.3 <- c(r = 0, b1 = -1.5, b2 = -0.75, b3 = .05, q = 1)
temp3 <- arima.sim(
n = TT, list(ar = true.3[c("b1", "b2", "b3")]),
sd = sqrt(true.3["q"])

)
sim.ar3 <- matrix(temp3, nrow = 1)

We set up the model list for the AR(3) in MARSS(1) form as follows:

Z <- matrix(c(1, 0, 0), 1, 3)
B <- matrix(list("b1", 1, 0, "b2", 0, 1, "b3", 0, 0), 3, 3)
U <- matrix(0, 3, 1)
Q <- matrix(list(0), 3, 3)
Q[1, 1] <- "q"
A <- matrix(0, 1, 1)
R <- matrix(0, 1, 1)
pi <- matrix(sim.ar3[3:1], 3, 1)
V <- matrix(0, 3, 3)
model.list.3 <- list(
Z = Z, B = B, U = U, Q = Q, A = A,
R = R, x0 = pi, V0 = V, tinitx = 1

)

and fit as normal:

ar3 <- MARSS(sim.ar3[3:TT], model = model.list.3)

The estimates are:

print(cbind(
true = true.3[c("b1", "b2", "b3", "q")],
estimates.no.miss = coef(ar3, type = "vector")

))

true estimates.no.miss
b1 -1.50 -1.5130316
b2 -0.75 -0.6755283
b3 0.05 0.1368458
q 1.00 1.1267684
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18.4 MARSS(p): models with observation error

We can easily fit MAR(p) processes observed with error using MARSS(p) models,
but the difficulty is specifying the initial state condition. π ≡ x1 and thus involves x1,
x0, .... However, we do not know the variance-covariance structure for these consec-
utive x. Specifying Λ = 0 and estimating π often causes the EM algorithm to run into
numerical problems. But if we have an abundance of data, fixing π might not overly
affect the B and Q estimates.

Here is an example where we set π to the mean of the data and set Λ to zero.
Why not set Λ equal to a diagonal matrix with large values on the diagonal to ap-
proximate a vague prior? The temporally consecutive initial states are definitely not
independent. A diagonal matrix would imply independence which will conflict with
the process model and means our model would be fundamentally inconsistent with
the data (and that usually has bad consequences for estimation).

Create some simulated data:

TT <- 1000 # set long
true.2ss <- c(r = .5, b1 = -1.5, b2 = -0.75, q = .1)
temp <- arima.sim(
n = TT, list(ar = true.2ss[c("b1", "b2")]),
sd = sqrt(true.2ss["q"])

)
sim.ar <- matrix(temp, nrow = 1)
noise <- rnorm(TT - 1, 0, sqrt(true.2ss["r"]))
noisy.data <- sim.ar[2:TT] + noise

Set up the model list for the model in MARSS(1) form:

Z <- matrix(c(1, 0), 1, 2)
B <- matrix(list("b1", 1, "b2", 0), 2, 2)
U <- matrix(0, 2, 1)
Q <- matrix(list("q", 0, 0, 0), 2, 2)
A <- matrix(0, 1, 1)
R <- matrix("r")
V <- matrix(0, 2, 2)
pi <- matrix(mean(noisy.data), 2, 1)
model.list.2ss <- list(
Z = Z, B = B, U = U, Q = Q, A = A,
R = R, x0 = pi, V0 = V, tinitx = 0

)

Fit as usual:

ar2ss <- MARSS(noisy.data, model = model.list.2ss)

Success! abstol and log-log tests passed at 101 iterations.
Alert: conv.test.slope.tol is 0.5.
Test with smaller values (<0.1) to ensure convergence.
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MARSS fit is
Estimation method: kem
Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
Estimation converged in 101 iterations.
Log-likelihood: -1368.796
AIC: 2745.592 AICc: 2745.632

Estimate
R.r 0.477
B.b1 -1.414
B.b2 -0.685
Q.q 0.140
Initial states (x0) defined at t=0

Standard errors have not been calculated.
Use MARSSparamCIs to compute CIs and bias estimates.

We can compare the results to modeling the data as if there is no observation er-
ror, and we see that the assumption of no observation error leads to poor B estimates:

model.list.2ss.bad <- model.list.2ss
# set R to zero in this model
model.list.2ss.bad$R <- matrix(0)

Fit using the model with R set to 0:

ar2ss2 <- MARSS(noisy.data, model = model.list.2ss.bad)

Compare results

print(cbind(
true = true.2ss,
model.no.error = c(NA, coef(ar2ss2, type = "vector")),
model.w.error = coef(ar2ss, type = "vector")

))

true model.no.error model.w.error
r 0.50 NA 0.4772368
b1 -1.50 -0.52826082 -1.4136279
b2 -0.75 0.03372857 -0.6853180
q 0.10 0.95834464 0.1404334

The middle column are the estimates assuming that the data have no observation
error and the right column are our estimates with the observation error estimated.
Clearly, assuming no observation error when it is present has negative consequences
for the B and Q estimates.

By the way, there is a straight-forward way to deal with the measurement error
if you are working with univariate ARMA models and you are only interested in
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the AR parameters (the b’s). Inclusion of measurement error leads to additional MA
components up to lag p (Staudenmayer and Buonaccorsi, 2005). This means that if
you are fitting an AR(p) model with measurement error, you can fit a ARMA(p,p) and
the measurement error will be absorbed in the p MA components. For the example
above, we could estimate the AR parameters for our AR(2) data with measurement
error by fitting a ARMA(p,p) model. Here’s how we could do that using R ’s arima()
function:

arima(noisy.data, order = c(2, 0, 2), include.mean = FALSE)

Call:
arima(x = noisy.data, order = c(2, 0, 2), include.mean = FALSE)

Coefficients:
ar1 ar2 ma1 ma2

-1.4448 -0.6961 0.9504 0.3428
s.e. 0.0593 0.0427 0.0686 0.0482

sigma^2 estimated as 0.9069: log likelihood = -1368.99, aic = 2747.99

Accounting for the measurement error definitely improves the estimates for the AR
component.

18.5 Discussion

Although both MARSS(1) and ARMA(p,p) approaches can be used to deal with
AR(p) processes (univariate data) observed with error, our simulations suggest that
the MARSS(1) approach is less biased and more precise (Figure 18.1) and that the
EM algorithm is working better for this problem. The performance of different ap-
proaches depends greatly on the underlying model. We chose AR parameters where
both ARMA(p,p) and MARSS(1) approaches work. If we used, for example, b1 = 0.8
and b2 = −0.2, the ARMA(2,2) gives b1 estimates close to 0 (i.e., wrong) while the
MARSS(1) EM approach gives estimates close to the truth (though rather variable).
One would want to also check REML approaches for fitting the ARMA(p,p) mod-
els since REML has been found to be less biased than ML estimation for this class
(Cheang and Reinsel, 2000; Ives et al., 2010). Ives et al. 2010 has R code for REML
estimation of ARMA(p,q) models in their appendix.

For multivariate data observed with error, especially multivariate data without a
one-to-one relationship to the underlying autoregressive process, an explicit MARSS
model will need to be used rather than an ARMA(p,p) model. The time steps required
for good parameter estimates are likely to be large; in our simulations, we used 100
for a AR(3) and 1000 for a ARSS(2). Thorough simulation testing should be con-
ducted to determine if the data available are sufficient to allow estimation of the B
terms at multiple lags.
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Fig. 18.1. Comparison of the AR parameter estimates using different approaches to model
ARSS(2) data (univariate AR(2) data observed with error). Results are from 200 simulations
of AR(2) data with 100 time steps. Results are shown for the b1 and b2 parameters of the AR
process fit with a 1) AR(2) model with no correction for measurement error, 2) MARSS(1)
model fit via the EM optimization, 3) MARSS(1) model fit via BFGS optimization (initial
conditions not optimized), 4) ARMA(2,2) model fit with thearima() function, and 5) AR(2)
model fit 2nd differencing with the arima() function. The "x" shows the mean of the simu-
lations and the bar in the boxplot is the median. The true values are shown with the dashed
horizontal line. The σ2 for the AR process was 0.1 and the σ2 for the measurement error was
0.5. The b1 parameters was -1.5, and b2 was -0.75.





19

Structural Time Series Models

Structural time series models are linear Gaussian state-space models which de-
compose the time series into additive random walks for the level, trend and season.
These models can be written as a MARSS model. R provides the StructTS() func-
tion in the {stats} package to fit the level, level plus trend, and level plus trend plus
season versions of structural time series models to univariate data.

Here it is shown how to fit structural time series models with MARSS() using
the same initial conditions assumptions as used in the StructTS() function. With
MARSS(), you are not restricted to univariate time series and you have control over
any parameter constraints that you wish to impose. You will see how to fit multivari-
ate structural time series models after the univariate cases are shown.

Required libraries for this chapter:

library(MARSS)
library(tidyr)
library(ggplot2)
library(forecast)

19.1 Univariate models

19.1.1 Level model

The basic stochastic level model fit by stats::StructTS() and using the notation
of that function is

yt = mt + vt where vt ∼ N(0,σ2
ε) (19.1)

where m is the level and is a random walk:

Type RShowDoc("Chapter_Structural_TS.R",package="MARSS") at the R command
line to open a file with all the code for the examples in this chapter.
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mt = mt−1 +wt where wt ∼ N(0,σ2
ξ) (19.2)

The initial conditions assumption used in the StructTS() function is the follow-
ing and this must be used in the MARSS() model in order to replicate the StructTS()
output. The initial condition at t = 0 for m is stochastic with fixed mean equal to y1
and variance equal to 10000 times the variance of the data, denoted s2.

m0 ∼ N(y1,10000s2) (19.3)

Here the model is fit to 20 time steps of tree ring data. fit1 is the StructTS()
output, fit2 is fit with MARSS() with parameters fixed at the StructTS() estimated
values, fit3 is the model fit with MARSS() using BFGS, and fit4 is the model fit
with MARSS() using EM. fit3 and fit4 are slightly different than fit1 because
the optimization algorithm is a hill-climbing algorithm for all these fits and stops at
slightly different points on the likelihood hill.

Fit with StructTS().

y <- window(treering, start = 0, end = 20)
fit1 <- StructTS(y, type = "level")

Fit with MARSS(). We set control=list(allow.degen=FALSE) when using the
EM algorithm (the default) in order to compare results to the BFGS algorithm used
in StructTS(). This will not allow variances to go to zero; they may appear that
way in the output but that is rounding.

vy <- var(y, na.rm = TRUE) / 100
mod.list <- list(

x0 = matrix(y[1]), U = "zero", tinitx = 0,
Q = matrix(fit1$coef[1]), R = matrix(fit1$coef[2]),
V0 = matrix(1e+06 * vy)

)
fit2 <- MARSS(as.vector(y), model = mod.list)
# Now estimate the parameters
mod.list <- list(
x0 = matrix(y[1]), U = "zero", tinitx = 0, V0 = matrix(1e+06 * vy),
Q = matrix("s2xi"), R = matrix("s2eps")

)
fit3 <- MARSS(as.vector(y), model = mod.list, method = "BFGS")
fit4 <- MARSS(as.vector(y),
model = mod.list,
control = list(allow.degen = FALSE)

)

A difference with StructTS() is that the reported fitted level (the x state es-
timate) is the estimate of the state conditioned on the data up to t not T . In the
{MARSS} package, the state estimate (in the states element of the fitted object) is
reported conditioned on all the data (up to T ). To compare the outputs, we need to
use MARSSkfss() to get xtt (the estimate of x conditioned on data up to t).
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fit2$kf <- MARSSkfss(fit2)
fit3$kf <- MARSSkfss(fit3)
fit4$kf <- MARSSkfss(fit4)
df <- data.frame(
StructTS = fit1$fitted, fit2 = fit2$kf$xtt[1, ],
fit.bfgs = fit3$kf$xtt[1, ], fit.em = fit4$kf$xtt[1, ]

)
head(df)

level fit2 fit.bfgs fit.em
1 1.265000 1.265000 1.265000 1.265000
2 1.132475 1.132475 1.132546 1.136460
3 1.200246 1.200246 1.200210 1.198366
4 1.457141 1.457141 1.457002 1.449322
5 1.448101 1.448101 1.448104 1.448054
6 1.123611 1.123611 1.123786 1.133389
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Fig. 19.1. Comparison of the level estimates for the stochastic level model.

19.1.2 Level plus trend model

The basic stochastic level plus trend model fit by stats::StructTS() is

yt = mt + vt where vt ∼ N(0,σ2
ε) (19.4)

where m and n are the stochastic level and trend. mt = mt−1 +nt−1 +wt and in matrix
form this is

[
m
n

]

t
=

[
1 1
0 1

][
m
n

]

t−1
+wt where wt ∼ MVN

(
0,

[
σ2

ξ 0
0 σ2

ζ

])
(19.5)
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The initial conditions assumption used in StructTS() for this model is the following
where s2 is the variance in the data (var(y)):

[
m
n

]

0
∼ MVN

([
y1
0

]
,

[
10000s2 10000s2

10000s2 10000s2

])
(19.6)

Because MARSS() does an inversion of the initial variance matrix as part of code
to force positive definite matrices and deal with degenerate models with 0s on diago-
nals of Q or R, the initial conditions variance used in StructTS() needs to be made
positive definite for MARSS(). This is done by adding a small value (1e-10) to the
diagonal as shown in the mod.list used for fit3 and fit4.

This model will be illustrated with the UKgas data set. For the tree ring data,
the trend variance estimate is 0 and that will not illustrate a stochastic trend. The
subset.ts() function in the {forecast} package is used to subset just the 2nd quarter
data.

Fit with StructTS().

y <- log10(forecast:::subset.ts(UKgas, quarter = 2))
fit1 <- StructTS(y, type = "trend")

Fit with MARSS(). First we will create a MARSS model with the same parameters
as the StructTS fit.

vy <- var(y, na.rm = TRUE) / 100
B <- matrix(c(1, 0, 1, 1), 2, 2)
Z <- matrix(c(1, 0), 1, 2)
# fitx parameters at fit1 values
mod.list <- list(
x0 = matrix(c(y[1], 0), 2, 1), U = "zero", tinitx = 0,
Q = diag(fit1$coef[1:2]), R = matrix(fit1$coef[3]),
V0 = matrix(1e+06 * vy, 2, 2), Z = Z, B = B

)
fit2 <- MARSS(as.vector(y),
model = mod.list, fit = FALSE,
control = list(trace = -1)

)
fit2$par <- fit2$start # otherwise par is NULL since fit=FALSE

Now estimate the parameters with MARSS().

mod.list <- list(
x0 = matrix(c(y[1], 0), 2, 1), U = "zero", tinitx = 0,
Q = ldiag(c("s2xi", "s2zeta")), R = matrix("s2eps"),
V0 = matrix(1e+06 * vy, 2, 2) + diag(1e-10, 2), Z = Z, B = B

)
fit3 <- MARSS(as.vector(y), model = mod.list, method = "BFGS")
fit4 <- MARSS(as.vector(y),
model = mod.list,
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control = list(allow.degen = FALSE)
)

Figure 19.2 shows the comparisons for the full level and trend estimates. The
EM algorithm would need a lower tolerance to get closer to the maximum likelihood
parameter values.

fit2$kf <- MARSSkfss(fit2)
fit3$kf <- MARSSkfss(fit3)
fit4$kf <- MARSSkfss(fit4)
data.frame(
StructTS = fit1$fitted[, 2], fit2 = fit2$kf$xtt[2, ],
fit.bfgs = fit3$kf$xtt[2, ], fit.em = fit4$kf$xtt[2, ]

)[1:5, ]

StructTS fit2 fit.bfgs fit.em
1 0.000000000 0.000000000 0.000000000 0.000000000
2 -0.003519920 -0.003519920 -0.003518509 -0.003546573
3 0.005201072 0.005201072 0.005203550 0.005264063
4 0.006762808 0.006762808 0.006759700 0.006890458
5 0.007290557 0.007290557 0.007286018 0.007429600
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Fig. 19.2. Comparison of the level and trend estimates for the stochastic level plus trend model.

19.1.3 Seasonal or BSM model

The seasonal model fit by StructTS() is the level plus trend model with an addi-
tional seasonal component st . The mt model is the same as for the level plus trend
model.

yt = mt + st + vt where vt ∼ N(0,σ2
ε) (19.7)

where
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st = −st−1 −·· ·− st− f +1 + vt where vt ∼ N(0,σ2
w) (19.8)

f is the frequency of the seasonality. For quarterly data, f = 4 and the st model is

st = −st−1 − st−2 − st−3 + vt (19.9)

Written in MARSS form, the model for a quarterly seasonality is the following.
s is the seasonality term while s1 and s2 are just keeping track of st−1 and st−2.

yt =
[
1 0 1 0 0

]




m
n
s
s1
s2




t

+ vt (19.10)

and the x model is



m
n
s
s1
s2




t

=




1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0







m
n
s
s1
s2




t−1

+wt (19.11)

where

wt ∼ MVN




0,




σ2
ξ 0 0 0 0

0 σ2
ζ 0 0 0

0 0 σ2
w 0 0

0 0 0 0 0
0 0 0 0 0







(19.12)

The initial conditions assumption is the following where again s2 is the variance in
the data (var(y)):
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(19.13)

Let’s see an example with the UK gas data set used in the help page ?StructTS.

y <- log10(UKgas)
fit1 <- StructTS(y, type = "BSM")

To make B for MARSS(), we write a little helper function. nf is the frequency.

makeB <- function(nf) {
B <- matrix(0, nf + 1L, nf + 1L)
B[1L:2L, 1L:2L] <- c(1, 0, 1, 1)
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B[3L, ] <- c(0, 0, rep(-1, nf - 1L))
if (nf >= 3L) {

ind <- 3:nf
B[cbind(ind + 1L, ind)] <- 1

}
return(B)

}

Now we can fit with MARSS().

nf <- frequency(y)
vy <- var(y) / 100
B <- makeB(nf)
Z <- matrix(c(1, 0, 1, rep(0, nf - 2L)), 1, nf + 1)
Q <- ldiag(list("s2xi", "s2zeta", "s2w", 0, 0))
R <- matrix("s2eps")
V0 <- matrix(1e+06 * vy, nf + 1, nf + 1) + diag(1e-10, nf + 1)
mod.list <- list(
x0 = matrix(c(y[1], rep(0, nf)), ncol = 1),
U = "zero", A = "zero", tinitx = 0,
Q = Q, R = R, V0 = V0, Z = Z, B = B

)
fit3 <- MARSS(as.vector(y), model = mod.list, method = "BFGS")
fit4 <- MARSS(as.vector(y),
model = mod.list,
control = list(allow.degen = FALSE)

)
fit4$kf <- MARSSkfss(fit4)
fit3$kf <- MARSSkfss(fit3)

Figure 19.3 shows the comparisons.
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Fig. 19.3. Comparison of the level, trend and season estimates for the BSM model.
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19.1.4 Forecasting

Forecasts can be made with the predict() function or the forecast() function.
Here we will use the BSM model fits to illustrate forecasting.

y <- log10(UKgas)
fit1 <- StructTS(y, type = "BSM")
nf <- frequency(y)
vy <- var(y) / 100
B <- makeB(nf) # defined in the BSM section above
Z <- matrix(c(1, 0, 1, rep(0, nf - 2L)), 1, nf + 1)
V0 <- matrix(1e+06 * vy, nf + 1, nf + 1) + diag(1e-10, nf + 1)
mod.list <- list(
x0 = matrix(c(y[1], rep(0, nf)), ncol = 1),
U = "zero", A = "zero", tinitx = 0,
Q = diag(c(fit1$coef[1:3], 0, 0)),
R = matrix(fit1$coef[4]),
V0 = V0, Z = Z, B = B

)
fit2 <- MARSS(as.vector(y), model = mod.list)

fit1 and fit2 are exactly the same since fit2 used the fit1 estimated parameters.
stats::predict.StructTS() is only for forecasting and takes the fit and

n.ahead as arguments. It returns a list with the forecasts in pred and a ts object
and their standard errors in se.

fr1 <- predict(fit1, n.ahead = 5)
fr1

$pred
Qtr1 Qtr2 Qtr3 Qtr4

1987 3.130126 2.831481 2.580969 2.947872
1988 3.177549

$se
Qtr1 Qtr2 Qtr3 Qtr4

1987 0.05450291 0.05465622 0.05773393 0.06022966
1988 0.08818051

The MARSS::predict.marssMLE() does both predicting within the data (similar
to other predict methods) and will forecast if n.ahead is passed in. It returns a list
with the predictions and forecasts in pred as a data frame in long form (suitable
for ggplot() calls). The standard errors and intervals (confidence or prediction) are
included in pred. The standard error is not printed but is in the pred data frame.

fr2 <- predict(fit2, n.ahead = 5, interval = "prediction")
fr2
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.rownames t estimate Lo 80 Hi 80 Lo 95
109 Y1 109 3.130126 3.060278 3.199975 3.023303
110 Y1 110 2.831481 2.761436 2.901526 2.724357
111 Y1 111 2.580969 2.506980 2.654958 2.467813
112 Y1 112 2.947872 2.870685 3.025059 2.829824
113 Y1 113 3.177549 3.064541 3.290557 3.004718

Hi 95
109 3.236950
110 2.938605
111 2.694125
112 3.065920
113 3.350380

The estimates are the same. ft is the time steps associated with the forecast.

rbind(
pred1 = fr1$pred, pred2 = fr2$pred$estimate[fr2$ft],
se1 = fr1$se, se2 = fr2$pred$se[fr2$ft]

)

[,1] [,2] [,3] [,4]
pred1 3.13012626 2.83148104 2.58096900 2.94787202
pred2 3.13012626 2.83148104 2.58096900 2.94787202
se1 0.05450291 0.05465622 0.05773393 0.06022966
se2 0.05450291 0.05465622 0.05773393 0.06022966

[,5]
pred1 3.17754896
pred2 3.17754896
se1 0.08818051
se2 0.08818051

If we use the forecast:::forecast.StructTS() function instead of predict(),
we get an object that can be plotted since the {forecast} package has a plot method
for StructTS objects. The {MARSS} package has a plot method for marssPredict
objects returned by predict() and forecast() functions used with marssMLE
objects. The forecast() function can be called with forecast::forecast() if
you have the {forecast} package installed or forecast.marssMLE() if not.

The plots from the StructTS and marssMLE objects are similar though they have
slightly different formats.

19.1.5 Fitted values

fitted(x) applied to a StructTS object will return the expected value of Xt (but
only the first 3 states) conditioned on the data up to time t. It is returned as a
ts or mts object depending if there is one state ("level") or multiple ("trend" or
"BSM"). For the BSM model, plotting this will show the decomposed time series
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fitted1 <- fitted(fit1)
plot(fitted1)
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Fig. 19.5. Output from a plot of a fitted StructTS object.

with the estimated level mt , slope or trend nt and season st terms. In the {MARSS}
package, the estimated states conditioned on the data up to time t is returned with
tsSmooth(x, type="xtt"). The function fitted() in the {MARSS} package has
the more typical meaning of fitted for a statistical model (model prediction of y or
x).

fitted2 <- tsSmooth(fit2, type = "xtt")
fitted2 <- subset(fitted2, .rownames %in% c("X1", "X2", "X3"))

This is a data frame in long-form which we can plot with ggplot(). Alternatively
instead of tsSmooth(x, type="xtt"), we can use MARSSkfss(x)$xtt to return
the state estimates as a matrix. Converting the matrix to a ts object makes it easier to
plot.
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ggplot(fitted2, aes(x = t, y = .estimate)) +
geom_line() +
facet_wrap(~.rownames, ncol = 1, scale = "free_y")

X3

X2

X1

0 30 60 90

2.0
2.2
2.4
2.6
2.8

−0.04
−0.02

0.00
0.02

−0.4
−0.2

0.0
0.2

t

.e
st

im
at

e

Fig. 19.6. Output from a plot of the states from the marssMLE object using tsSmooth() output.

fitted3 <- MARSSkfss(fit2)$xtt
fitted3 <- ts(t(fitted3[1:3, ]))
plot(fitted3)
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Fig. 19.7. Output from a plot of states from a marssMLE object.

To output the model fitted value for y, we add the level and season states
together if using StructTS() because for the BSM model, the model for yt is
mt + st . With {MARSS}, this would be output with fitted(x, type="ytt").
Alternative we could add the mt and st states from the {MARSS} output, but
fitted(x, type="ytt") allows you to easily compute this for cases that are more
complex with a non-identity Z, non-zero a and covariates d.
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Fig. 19.8. Data and model fitted values.

19.1.6 Residuals

residuals(x) applied to a StructTS object will return the difference between yt
and the expected value of Yt conditioned on the data up to time t. The residuals are
returned as a ts object. The residuals are standardized, i.e., divided by the square
root of the conditional variance of residuals (conditioned on the data). Note the con-
ditional variance of the residuals is not var(resids); see ?MARSSresiduals for a
discussion of how the conditional variance of state-space residuals is computed.

resids1 <- residuals(fit1)

In the {MARSS} package, the residuals() function will return the model residuals
conditioned on all the data, data up to time t − 1 or up to time t. To replicate the
behavior for StructTS objects, we need to use conditioning up to time t which is
type="tt" and we need to specify marginal standardization.

resids2 <- residuals(fit2, type = "tt", standardization = "marginal")

The output is a data frame in long-form which we can plot with ggplot().

19.2 Multivariate models

The {MARSS} package allows one to fit multivariate structural equation models.
In this section, we will use the level plus trend model as the example, however the
approaches work for all the structural models. The focus for this example will be
estimating a changing trend using multiple observation time series.

19.2.1 Multiple observations of same process

The basic stochastic level plus trend model is
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Fig. 19.9. The initial difference in the residuals is due to the small value added to the diagonal
of the initial condition variance-covariance matrix to allow MARSS() to fit this model.
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Now imagine that there are three independent yt observations of the mt process. The
observation model then becomes.
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The initial conditions assumption used in the StructTS() for this model is the
following and we will keep that with the addition of a small amount to the diagonal
to make the initial condition matrix positive definite.

[
m
n

]

0
∼ MVN

([
y1
0

]
,

[
10000s2 +1e−10 10000s2

10000s2 10000s2 +1e−10

])
(19.17)

Simulated data

We will model a simulated random walk with level and an abrupt trend change. We
will generate observations that are the level + substantial error. We will also insert
50% missing values into the y to illustrate how the method will deal with missing
values. Figure 19.10 shows the simulated data. We will fit to the points. The line is
the true level.

set.seed(100)
TT <- 60
t <- 1:TT
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q <- 0.01
r <- 0.01
trend <- 0.2 * sin((1:TT) / 4)
level <- cumsum(rnorm(TT, trend, sqrt(q)))
# Simulated data
n <- 5
miss.percent <- 0.5
ym <- matrix(1, n, 1) %*% level + matrix(rnorm(TT * n, 0, sqrt(r * 100)), n, TT)
ym[sample(n * TT, miss.percent * n * TT)] <- NA
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Fig. 19.10. Observations (points) and truth (line).

Model set-up

Set up the x part of the equation for MARSS(). This part does not change from the
univariate case except that we will estimate the initial condition for the level and will
treat the variance for the level as known (at the true value). It can be hard to separate
the variances with large observation error. We will assume that we know something
about the level process and it is the changing trend that we want to estimate.

vy <- var(y, na.rm = TRUE) / 100
mod.list.x <- list(
x0 = matrix(list("x0", 0), nrow = 2), tinitx = 1,
V0 = matrix(1e+06 * vy, 2, 2) + diag(1e-10, 2),
Q = ldiag(list(q, "qt")),
B = matrix(c(1, 0, 1, 1), 2, 2),
U = "zero"

)

Next we set up the y part of the equation. This is the part that changes. We will
assume that the observations are independent with the same bias (i.e., expected value
of each y is the same). We will relax this assumption later.



19.2 Multivariate models 263

mod.list.y <- list(
A = "zero",
R = "diagonal and equal"

)

Fit model

Estimate the level and trend from one of the simulated observation time series:

Z <- matrix(c(1, 0), 1, 2, byrow = TRUE)
mod.list <- c(mod.list.x, mod.list.y, list(Z = Z))
fitu <- MARSS(ym[1, ], model = mod.list, method = "BFGS", inits = list(x0 = 0))

Now estimate the parameters with all the time series.

Z <- matrix(c(1, 0), n, 2, byrow = TRUE)
mod.list <- c(mod.list.x, mod.list.y, list(Z = Z))
fitm <- MARSS(ym, model = mod.list, method = "BFGS", inits = list(x0 = 0))

Compare trend estimate to truth

Our objective is to estimate the level and trend states (Figure 19.11). In this example,
the multivariate model is able to estimate the trend variance unlike when we fit to
only one time series (the flat line in the trend plot). But if we increase the error added
or the missing values, the ability to estimate the trend variance would disappear.
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Fig. 19.11. State estimates from the one bad time series versus multivariate bad time series.

19.2.2 Covariate affects observations

We can add a known covariate that affects the observations. In this case, it is a step
function representing a before-after effect. We will have it affect only the first few



264 19 STS Models

0 10 20 30 40 50 60

−
2

1
4

data

y

0 10 20 30 40 50 60

0.
0

0.
6

covariate

t

co
va

ria
te

[1
, ]

Fig. 19.12. Observations (points) of the true data (line) with covariate effect plus error and
missing values added. It affects some time series positively and others negatively.

observation time series and the effect will be different for each series (Figure 19.12).

We fit by passing the covariate into d (because it affects the observations not
the process). The estimated versus true effects are shown in Figure 19.13 and the
estimated trend is in Figure 19.14.

Z <- matrix(c(1, 0), n, 2, byrow = TRUE)
mod.list <- c(mod.list.x, mod.list.y, list(Z = Z, d = covariate))
fitmc <- MARSS(ymc, model = mod.list, method = "BFGS", inits = list(x0 = 0))
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Fig. 19.13. Estimate of the effect of the covariate.
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Fig. 19.14. State estimates from the univariate good data, multivariate bad data, and multivari-
ate with a covariate.

19.2.3 Observations with bias and different errors

Our observations may have different (unknown) levels of observation error and be
biased relative to each other (Figure 19.15).
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Fig. 19.15. Observations (points) with differing error and bias added.

We fit by changing the R and a specifications. The R estimates are shown in
Figure 19.16.

Z <- matrix(c(1, 0), n, 2, byrow = TRUE)
mod.list <- c(mod.list.x, list(Z = Z, R = "diagonal and unequal", A = "scaling"))
fitm2 <- MARSS(ym2, model = mod.list, method = "BFGS", inits = list(x0 = 0))

The level will be scaled up or down to fit the first observation time series. We
have to set one of the a to 0 and by default, MARSS() sets the first one to zero. The
estimates are in Figure 19.17.
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Fig. 19.16. Estimate of the observation variances.
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Fig. 19.17. State estimates. The level for the model with bias will be shifted up or down. This
is not an error but a feature of having to scale to one of the time series and by default, the first
is chosen.

19.2.4 Indepenent realizations of the same process

In the last section, we had multiple observations of the same process. We can also
have multiple realizations of independent processes with the same variance values.
In this example, we assume that the level is an independent observation of a shared
trend.
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 (19.18)

Each is observed by an independent yt observation.
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Simulated data

We simulate data as in the last section but simulate two levels and trends. Figure
19.18 shows the simulated data.

set.seed(100)
TT <- 60
t <- 1:TT
q <- 0.5
qt <- 0.01
r <- 0.1
b <- 0.5
trend <- 0.2 * sin((1:TT) / 4)
level1 <- cumsum(rnorm(TT, trend, sqrt(q)))
level2 <- cumsum(rnorm(TT, trend, sqrt(q)))
# Simulated data
ym <- rbind(level1, level2) + matrix(rnorm(TT * 2, 0, sqrt(r)), 2, TT)
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Fig. 19.18. Observations (points) and truth (line). The levels (line) have the same variance
but are independent. The level processes share a trend, i.e., m1,t = m1,t−1 + nt−1 and m2,t =
m2,t−1 +nt−1.

Fit models

Estimate the level and trend from each observation time series alone:
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vy <- var(y, na.rm = TRUE) / 100
Z <- matrix(c(1, 0), 1, 2)
mod.list.x <- list(
x0 = matrix(list("x0", 0), nrow = 2), tinitx = 1,
V0 = matrix(1e+06 * vy, 2, 2) + diag(1e-10, 2),
Q = ldiag(list(q, "qt")),
B = matrix(c(1, 0, 1, 1), 2, 2),
U = "zero"

)
mod.list <- c(mod.list.x, mod.list.y, list(Z = Z))
fitm1 <- MARSS(ym[1, ], model = mod.list, method = "BFGS", inits = list(x0 = 0))
fitm2 <- MARSS(ym[2, ], model = mod.list, method = "BFGS", inits = list(x0 = 0))

Estimate the level and trend from the two simulated observation time series to-
gether:

Z <- matrix(c(1, 0, 0, 0, 1, 0), 2, 3, byrow = TRUE)
m <- 3
mod.list.x <- list(
x0 = matrix(list("x0.1", "x0.2", 0), nrow = m), tinitx = 1,
V0 = matrix(1e+06 * vy, m, m) + diag(1e-10, m),
Q = ldiag(list("q", "q", "qt")),
B = matrix(c(1, 0, 1, 0, 1, 1, 0, 0, 1), m, m, byrow = TRUE),
U = "zero"

)
mod.list <- c(mod.list.x, mod.list.y, list(Z = Z))
fitm3 <- MARSS(ym, model = mod.list, method = "BFGS", inits = list(x0 = 0))

Compare state estimates

The two time series alone are not able to estimate the trend. Both put all the variation
in the data into the level state.

19.3 Summary

This chapter illustrates how to fit the structural equation models fit by the StructTS()
function in R . The initial conditions used in that function were used here, however
those initial conditions should not be assumed to be the best choice. The default
behavior in the {MARSS} package is to treat x0 as an estimated parameter with
initial conditions variance matrix set to all 0. Structural time series models can be
a challenge for the EM algorithm and for most examples the BFGS algorithm was
used. If using EM, the algorithm will need to be run longer to achieve the maximum
likelihood.

The {MARSS} package allows you to fit multivariate structural time series mod-
els with a flexible data structure and flexible relationships between the data. It allows
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Fig. 19.19. Common trend and separate level estimates.

you to include covariates and model intervention effects. You can model multiple
observations of the same process or different observations of independent processes
that share some or all parameter values. You can also model cases where the trend (or
seasonality) is shared across processes but not the levels. The ability to use multiple
data sets can improve estimation and allow you to estimate an underlying process
which might remain hidden if only one data set were used for estimation.
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Comparison to the {KFAS} Package

The {MARSS} package uses the Kalman filter and smoother in the {KFAS}
package (KFAS: Kalman Filter and Smoother for Exponential Family State Space
Models) (Helske, 2017) which implements the more stable filter and smoother algo-
rithm by Koopman and Durbin (2000); Durbin and Koopman (2012). The {KFAS}
package also provides filtering and smoothing for the general exponential class for
the observation errors, e.g., Gaussian, Poisson, binomial, negative binomial, and
gamma distributions.

This chapter compares the {KFAS} versus {MARSS} functions for the filter
and smoother, fitted values, residuals and predictions for state-space models. Un-
derstanding the relationship between the package functions can help understand the
state-space outputs. State-space output is complex because there are two processes
(state and observation), three possible data conditionings (1 to t − 1, 1 to t, and 1
to T where T is the last time step), and conditional fitted values versus conditional
expected values which the conditional expectation of the right side of the process
equation without or with the error term.

This chapter uses the following packages:

library(MARSS)
library(KFAS)
library(ggplot2) # plotting
library(tidyr) # data frame manipulation

20.1 Nile River example

This is the Nile River example in Durbin and Koopman (2012) and shown in Chapter
12 on structural breaks. This model is

Type RShowDoc("Chapter_KFAS.R",package="MARSS") at the R command line to open
a file with all the code for the examples in this chapter.
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xt = xt−1 +wt where wt ∼ N(0,q)

yt = xt + vt where vt ∼ N(0,r)
(20.1)

20.1.1 Fitting models

KFAS::SSModel() sets up the {KFAS} model which will be passed to the fitting
functions. KFAS::SSMtrend(degree = 1) designates a local level model. KFAS::fitSSM()
fits the model.

model_Nile <- SSModel(Nile ~ SSMtrend(
degree = 1,
Q = list(matrix(NA))

),
H = matrix(NA)
)
kinits <- c(log(var(Nile)), log(var(Nile)))
fit_kfas_default <- fitSSM(model_Nile, kinits, method = "BFGS")

{KFAS} uses a stochastic prior on the initial condition and the fitting function
does not estimate x0. By default, a diffuse prior on x0 is used. The default behavior for
{MARSS}, in contrast, is to estimate x0 as a parameter and fix V 0

0 (the conditional
variance of x0) to 0. This will lead to small differences between the fits. The EM
algorithm in {MARSS} does not implement a true diffuse prior but we can specify a
stochastic prior to mimic a {KFAS} fit.

We will set a stochastic prior on x1 with a mean of 0 and variance of 1000 by
changing P1, P1inf, and a1 in the {KFAS} model. Setting P1inf to 0, turns off the
diffuse prior.

model_Nile_stoch <- model_Nile
model_Nile_stoch$a1[1, 1] <- 0
model_Nile_stoch$P1[1, 1] <- 1000
model_Nile_stoch$P1inf[1, 1] <- 0
kinits <- c(log(var(Nile)), log(var(Nile)))
fit_kfas_stoch <- fitSSM(model_Nile_stoch, kinits, method = "BFGS")
kfs_kfas_stoch <- KFS(fit_kfas_stoch$model)

With MARSS, the model is specified as:

mod.nile <- list(
Z = matrix(1), A = matrix(0), R = matrix("r"),
B = matrix(1), U = matrix(0), Q = matrix("q"),
tinitx = 1

)

The default initial condition in the {MARSS} package is to estimate x1 as a pa-
rameter (and set V1 to zero). This default behavior prevents prior information about
the covariance structure of the states from affecting the estimates, though for some
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models, the initial conditions estimation is not well defined (in which case setting a
stochastic prior is helpful).

We will fit with the EM and BFGS algorithm in the {MARSS} package. We
will start the BFGS algorithm at the same initial conditions used in our {KFAS}
fitting call, although this isn’t quite the same because {MARSS} and {KFAS} are
using different approaches to ensure that the variances stay positive-definite during
the BFGS maximization steps.

dat <- t(as.matrix(Nile))
rownames(dat) <- "Nile"
fit_em_default <- MARSS(dat, model = mod.nile, silent = TRUE)
inits <- list(Q = matrix(var(Nile)), R = matrix(var(Nile)))
fit_bfgs_default <- MARSS(dat,
model = mod.nile, inits = inits,
method = "BFGS", silent = TRUE

)

We will also fit a stochastic prior so that we can compare more directly to the
same model fit with {KFAS}.

mod.nile.stoch <- mod.nile
mod.nile.stoch$x0 <- fit_kfas_stoch$model$a1
mod.nile.stoch$V0 <- fit_kfas_stoch$model$P1
fit_em_stoch <- MARSS(dat, model = mod.nile.stoch, silent = TRUE)
fit_bfgs_stoch <- MARSS(dat,
model = mod.nile.stoch, inits = inits,
method = "BFGS", silent = TRUE

)

MARSSkfas() will return the SSModel object that is passed to KFAS::KFS() (in-
ternally in the {MARSS} functions). {MARSS} does not use KFAS::fitSSM() but
it does use KFAS::KFS() for the filter, smoother and log-likelihood. The SSModel
used inside {MARSS} looks different than model_Nile because the a term is in T
and the u term is in T. We can set Q and H to NA to estimate those values. The results
are the same as for fit_kfas_stoch.

marss_kfas_model <- MARSSkfas(fit_em_stoch,
return.kfas.model = TRUE,
return.lag.one = FALSE

)$kfas.model
marss_kfas_model$Q[1, 1, 1] <- NA
marss_kfas_model$H[1, 1, 1] <- NA
kinits <- c(log(var(Nile)), log(var(Nile)))
fit_marss_kfas <- fitSSM(marss_kfas_model, kinits, method = "BFGS")

The {KFAS} parameter estimates are in $model. The negative log-likelihood
is in $optim.out$value (or use KFS(kfas_temp$model)$logLik for the log-
likelihood). Here is the comparison of all the models. Note that the default {KFAS}
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model is fundamentally different than the default {MARSS} model because the for-
mer uses a diffuse prior while the later is estimating x1 as a parameter.

Q R logLik
KFAS default 1469.163 15098.65 -632.5456
MARSS em default 1526.011 14882.34 -637.6218
MARSS bfgs default 1266.888 15282.69 -637.6092
KFAS stoch 15210.195 33874.59 -697.8576
MARSS em stoch 15027.174 33924.66 -697.8586
MARSS bfgs stoch 15102.741 33956.00 -697.8580
KFAS w marss kfas model 15210.195 33874.59 -697.8576

20.1.2 State filtering and smoothing

For this section, we will compare filter and smoother output from the two packages.
For this we need identical models.

fit_kfas <- fit_kfas_stoch
fit_marss <- fit_em_stoch
fit_marss$par$Q[1, 1] <- fit_kfas$model$Q
fit_marss$par$R[1, 1] <- fit_kfas$model$H

The Kalman filter and smoother function in {KFAS} is KFS(). This returns a variety
of output:

kf_kfas <- KFS(fit_kfas$model,
filtering = "state",
smoothing = "state", simplify = FALSE

)

The analogous function in {MARSS} is MARSSkfas(). It uses KFAS::KFS() for the
implementation of the Koopman and Durbin Kalman filter and smoother algorithm
(Koopman and Durbin, 2000) but transforms the state-space model passed into that
function in order to get a variety of variables needed for the EM algorithm, specifi-
cally the lag-1 smoother values.

kf_marss <- MARSSkfss(fit_marss)

The terminology of the filter/smoother variables is different between MARSSkfas()
and KFAS::KFS(). Note {MARSS} also includes MARSSkfss(), which is the classic
(less stable) Kalman filter and smoother; see for example the chapter on the Kalman
filter in Shumway and Stoffer (2006).

names(kf_kfas)
names(kf_marss)

The {MARSS} semantics are first letter: x or y process, second letter: time (usu-
ally t), and third letter: the time conditioning. So xtT means the estimate of the x
process at time t conditioned on all the data while xtt1 means the estimate of the x
process at time t conditioned on the data from time step 1 to time step t −1.
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• kf_kfas$a is kf_marss$xtt1. This is the expected value of Xt conditioned on
the data up to time step t − 1. kf_kfas$att is kf_marss$xtt. This is the ex-
pected value of Xt conditioned on the data up to time step t.
cbind(
a = kf_kfas$a[1:n], xtt1 = kf_marss$xtt1[1:n],
att = kf_kfas$att[1:n], xtt = kf_marss$xtt[1:n]

)

a xtt1 att xtt
[1,] 0.00000 0.00000 32.11507 32.11507
[2,] 32.11507 32.11507 396.72378 396.72378
[3,] 396.72378 396.72378 643.48197 643.48197
[4,] 643.48197 643.48197 909.42338 909.42338
[5,] 909.42338 909.42338 1029.38565 1029.38565

• kf_kfas$alphahat is kf_marss$xtT. This is the expected value of Xt condi-
tioned on all the data.
cbind(kf_kfas$alphahat[1:n], kf_marss$xtT[1:n])

[,1] [,2]
[1,] 64.38081 64.38081
[2,] 569.63686 569.63686
[3,] 809.81105 809.81105
[4,] 981.20113 981.20113
[5,] 1049.85712 1049.85712

• kf_kfas$v is kf_marss$Innov. These are the innovations or one-step-ahead
model residuals. kf_kfas$F is kf_marss$Sigma. This the variance-covariance
matrix of the innovations.
cbind(
v = kf_kfas$v[1:n], Innov = kf_marss$Innov[1:n],
F = kf_kfas$F[1:n], Sigma = kf_marss$Sigma[1:n]

)

v Innov F Sigma
[1,] 1120.0000 1120.0000 34874.59 34874.59
[2,] 1127.8849 1127.8849 50056.11 50056.11
[3,] 566.2762 566.2762 60035.34 60035.34
[4,] 566.5180 566.5180 63845.84 63845.84
[5,] 250.5766 250.5766 64986.59 64986.59

• kf_kfas$P is kf_marss$Vtt1. This is the conditional variance of Xt conditioned
on the data up to time step t − 1. kf_kfas$Ptt is kf_marss$Vtt. This is the
conditional variance of Xt conditioned on the data up to time step t.
cbind(
P = kf_kfas$P[1:n], Vtt1 = kf_marss$Vtt1[1:n],
Ptt = kf_kfas$Ptt[1:n], Vtt = kf_marss$Vtt[1:n]

)

P Vtt1 Ptt Vtt
[1,] 1000.00 1000.00 971.3258 971.3258
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[2,] 16181.52 16181.52 10950.5590 10950.5590
[3,] 26160.75 26160.75 14761.0518 14761.0518
[4,] 29971.25 29971.25 15901.7997 15901.7997
[5,] 31112.00 31112.00 16217.2867 16217.2867

• "r", "r0", "r1", "N", "N0", "N1" and "N2" are specific to the Koopman and Durbin
algorithm and are not returned by MARSSkfss() though you could get them by
using the SSModel object returned by MARSSkfas().

20.1.3 Observation filtering and smoothing

Both {KFAS} and {MARSS} return the smoothed and filtered (one-step ahead)
model predictions via fitted(). However, for {KFAS} this just returns the smoothed
values. The KFAS::KFS() function will return the filtered and smoothed model pre-
dictions in matrix form along with other filter and smoother output.

kf_kfas <- KFS(fit_kfas$model,
filtering = "signal",
smoothing = "signal", simplify = FALSE

)

The function to obtain these output in {MARSS} is fitted().

kf_marss <- MARSSkf(fit_marss)

Note, the function MARSShatyt() is the statistical counterpart to MARSSkf() and re-
turns the equivalent values but for the observation equation. This is very different
than what KFS() (or MARSS::fitted()) returns for the signal. MARSShatyt() re-
turns the expected value of Yt conditioned on Yt = yt . If there are no missing data,
this is simply yt and the covariance of Yt and Xt conditioned on Yt = yt would be
0. These values are not this when there are missing values and these expectations are
crucial to the general EM algorithm for missing values.

ytT means the estimate of the y process conditioned on all the data while ytt1
means the estimate of the y process conditioned on the data 1 to t −1.

• kf_kfas$m is the one-step ahead prediction of yt . In MARSS, this is returned by
fitted(fit_marss, type="ytt1") in the .fitted column. "ytt1" means the
expected value of Yt conditioned on the data up to time step t −1.
ytt1_fit <- fitted(fit_marss, type = "ytt1")$.fitted
ytt1_hatyt <- MARSShatyt(fit_marss, only.kem = FALSE)$ytt1
cbind(m = kf_kfas$m[1:n],

fitted = ytt1_fit[1:n],
MARSShatyt = ytt1_hatyt[1:n])

m fitted MARSShatyt
[1,] 0.00000 0.00000 0.00000
[2,] 32.11507 32.11507 32.11507
[3,] 396.72378 396.72378 396.72378
[4,] 643.48197 643.48197 643.48197
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[5,] 909.42338 909.42338 909.42338
[6,] 1029.38565 1029.38565 1029.38565
[7,] 1092.24553 1092.24553 1092.24553
[8,] 957.66596 957.66596 957.66596
[9,] 1088.96405 1088.96405 1088.96405
[10,] 1224.47121 1224.47121 1224.47121

• kf_kfas$P_mu is the variance-covariance matrix of the expected value of Yt con-
ditioned on the data from time step 1 to time step t −1. MARSShatyt(fit_marss)$var.Eytt1
returns the same values; var.Eytt1 indicates that it is the variance of the ex-
pected value of Yt conditioned on data up to time step t − 1. In {MARSS}, the
standard errors of the one-step ahead prediction are also returned by fitted()
with type = "ytt1" and interval = "confidence". Using fitted(), you
can output the values as matrices instead of a data frame if you need the variance-
covariance matrices not just standard errors.
var.Eytt1_fit <-
fitted(fit_marss, type = "ytt1", interval = "confidence")$.se^2

var.Eytt1_hatyt <-
MARSShatyt(fit_marss, only.kem = FALSE)$var.Eytt1

cbind(
P_mu = kf_kfas$P_mu[1:n], fitted = var.Eytt1_fit[1:n],
MARSShatyt = var.Eytt1_hatyt[1:n]

)

P_mu fitted MARSShatyt
[1,] 1000.00 1000.00 1000.00
[2,] 16181.52 16181.52 16181.52
[3,] 26160.75 26160.75 26160.75
[4,] 29971.25 29971.25 29971.25
[5,] 31112.00 31112.00 31112.00
[6,] 31427.48 31427.48 31427.48
[7,] 31512.79 31512.79 31512.79
[8,] 31535.71 31535.71 31535.71
[9,] 31541.86 31541.86 31541.86
[10,] 31543.51 31543.51 31543.51

• kf_kfas$muhat is the smoothed prediction of yt . It is the expected value of
ZXt +a conditioned on the data up to time T ; notice it is not the expected value
of Yt rather ZXt +a, which is the model prediction of yt . In {MARSS}, this is re-
turned by fitted(fit_marss, type="ytT")$.fitted. Note, MARSShatyt(fit_marss)$ytT
does not return this. MARSShatyt() returns the expected value of Yt conditioned
on the data up to time T , i.e., all the data, which if there are no missing data is
simply the observed data.
ytT_fit <- fitted(fit_marss, type = "ytT")$.fitted
ytT_hatyt <- MARSShatyt(fit_marss)$ytT
cbind(
a = kf_kfas$muhat[1:n], fitted = ytT_fit[1:n],
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MARSShatyt = ytT_hatyt[1:n], Nile = Nile[1:n]
)

a fitted MARSShatyt Nile
[1,] 64.38081 64.38081 1120 1120
[2,] 569.63686 569.63686 1160 1160
[3,] 809.81105 809.81105 963 963
[4,] 981.20113 981.20113 1210 1210
[5,] 1049.85712 1049.85712 1160 1160
[6,] 1069.05730 1069.05730 1160 1160
[7,] 1047.42286 1047.42286 813 813
[8,] 1131.04778 1131.04778 1230 1230
[9,] 1170.24168 1170.24168 1370 1370
[10,] 1119.74113 1119.74113 1140 1140

• kf_kfas$V_mu is the variance of the expected value of Yt conditioned on
all the data. In {MARSS}, this is returned in the standard errors returned
by fitted(..., interval="confidence") . Again, var.Eytt1 returned by
MARSShatyt() is not this because it returns the variance of the expected value
of Yt conditioned on all the data not the expected value of ZXt + a. The lat-
ter is the model prediction. For the former, if there are no missing values,
E[Yt |Yt = yt ] = yt and the variance is 0.
var.EytT_fit <-
fitted(fit_marss, type = "ytT", interval = "confidence")$.se^2

var.EytT_hatyt <-
MARSShatyt(fit_marss, only.kem = FALSE)$var.EytT

cbind(
V_mu = kf_kfas$V_mu[1:n], fitted = var.EytT_fit[1:n],
MARSShatyt = var.EytT_hatyt[1:n]

)

V_mu fitted MARSShatyt
[1,] 942.3097 942.3097 0
[2,] 8128.6821 8128.6821 0
[3,] 10055.5588 10055.5588 0
[4,] 10572.2107 10572.2107 0
[5,] 10710.7402 10710.7402 0
[6,] 10747.8841 10747.8841 0
[7,] 10757.8434 10757.8434 0
[8,] 10760.5138 10760.5138 0
[9,] 10761.2298 10761.2298 0
[10,] 10761.4218 10761.4218 0

20.1.4 Confidence and prediction intervals

Both {KFAS} and {MARSS} use predict() for predictions. The inputs and outputs
of the predice() functions from the two packages have many similarities but also
many differences.
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Smoothed predictions

With newdata and n.ahead not passed in, predict() returns the model prediction
for Yt (i.e., fitted values) conditioned on all the data. This is the expected value and
standard error of ZXt +a conditioned on all the data (before and after t).

conf_kfas <- predict(fit_kfas$model,
interval = "confidence",
se.fit = TRUE

)
head(conf_kfas)

fit lwr upr se.fit
[1,] 64.38081 4.215678 124.5460 30.69706
[2,] 569.63686 392.928063 746.3456 90.15920
[3,] 809.81105 613.270944 1006.3512 100.27741
[4,] 981.20113 779.675175 1182.7271 102.82126
[5,] 1049.85712 847.015139 1252.6991 103.49271
[6,] 1069.05730 865.863912 1272.2507 103.67200

In {MARSS}, the same prediction is returned by fitted(). By default fitted()
returns a data frame, but the output can be changed to return matrices.

conf_marss1 <- fitted(fit_marss, type = "ytT", interval = "confidence")
head(conf_marss1)

.rownames t y .fitted .se .conf.low
1 Nile 1 1120 64.38081 30.69706 4.215678
2 Nile 2 1160 569.63686 90.15920 392.928063
3 Nile 3 963 809.81105 100.27741 613.270944
4 Nile 4 1210 981.20113 102.82126 779.675175
5 Nile 5 1160 1049.85712 103.49271 847.015139
6 Nile 6 1160 1069.05730 103.67200 865.863912

.conf.up
1 124.5460
2 746.3456
3 1006.3512
4 1182.7271
5 1252.6991
6 1272.2507

predict() can also be used (with type specified). predict() returns a list and the
data frame is in pred.

conf_marss2 <- predict(fit_marss,
type = "ytT",
interval = "confidence", level = 0.95

)
head(conf_marss2$pred)
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.rownames t y estimate se Lo 95
1 Nile 1 1120 64.38081 30.69706 4.215678
2 Nile 2 1160 569.63686 90.15920 392.928063
3 Nile 3 963 809.81105 100.27741 613.270944
4 Nile 4 1210 981.20113 102.82126 779.675175
5 Nile 5 1160 1049.85712 103.49271 847.015139
6 Nile 6 1160 1069.05730 103.67200 865.863912

Hi 95
1 124.5460
2 746.3456
3 1006.3512
4 1182.7271
5 1252.6991
6 1272.2507

Prediction intervals are the intervals for new data. They are the expected value
and standard error of ZXt + a + vt conditioned on all the data (before and after t).
predict.SSModel() returns the upper and lower prediction intervals, but the stan-
dard error returned is the standard error for the confidence interval (i.e., for ZXt +a)
not the prediction interval.

pred_kfas <- predict(fit_kfas$model,
interval = "prediction", se.fit = TRUE

)
head(pred_kfas)

fit lwr upr se.fit
[1,] 64.38081 -301.3345 430.0961 30.69706
[2,] 569.63686 167.9481 971.3256 90.15920
[3,] 809.81105 399.0120 1220.6101 100.27741
[4,] 981.20113 567.9935 1394.4088 102.82126
[5,] 1049.85712 636.0060 1463.7082 103.49271
[6,] 1069.05730 655.0339 1483.0807 103.67200

In MARSS, fitted() or predict() can be used to return the prediction intervals.
These functions return the standard deviation of ZXt + a + vt (so standard devia-
tion of the prediction intervals). .sd will not be the same as se.fit returned by
predict.SSModel() but the intervals will be the same.

pred_marss1 <- fitted(fit_marss, type = "ytT", interval = "prediction")
head(pred_marss1)

.rownames t y .fitted .sd .lwr .upr
1 Nile 1 1120 64.38081 186.5929 -301.3345 430.0961
2 Nile 2 1160 569.63686 204.9470 167.9481 971.3256
3 Nile 3 963 809.81105 209.5952 399.0120 1220.6101
4 Nile 4 1210 981.20113 210.8241 567.9935 1394.4088
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5 Nile 5 1160 1049.85712 211.1524 636.0060 1463.7082
6 Nile 6 1160 1069.05730 211.2403 655.0339 1483.0807

This would return the same values but as a marssPredict object instead of a data
frame.

pred_marss2 <- predict(fit_marss,
type = "ytT",
interval = "prediction", level = 0.95

)

One step ahead predictions

The default for predict.SSModel() in {KFAS} is to return model fitted values
conditioned on all the data. For the one-step ahead predictions, set filtered=TRUE.
This returns the expected value and standard error of ZXt +a conditioned on the data
up to t −1 only.

conf_kfas_t1 <- predict(fit_kfas$model,
interval = "confidence",
se.fit = TRUE, filtered = TRUE

)
head(conf_kfas_t1)

fit lwr upr se.fit
[1,] 0.00000 -61.97950 61.9795 31.62278
[2,] 32.11507 -217.20530 281.4354 127.20661
[3,] 396.72378 79.71359 713.7340 161.74287
[4,] 643.48197 304.16897 982.7950 173.12206
[5,] 909.42338 563.71332 1255.1334 176.38593
[6,] 1029.38565 681.92720 1376.8441 177.27798

In {MARSS}, this output is returned by setting type="ytt1".

conf_marss1_t1 <- fitted(fit_marss, type = "ytt1", interval = "confidence")
head(conf_marss1_t1)

.rownames t y .fitted .se .conf.low
1 Nile 1 1120 0.00000 31.62278 -61.97950
2 Nile 2 1160 32.11507 127.20661 -217.20530
3 Nile 3 963 396.72378 161.74287 79.71359
4 Nile 4 1210 643.48197 173.12206 304.16897
5 Nile 5 1160 909.42338 176.38593 563.71332
6 Nile 6 1160 1029.38565 177.27798 681.92720

.conf.up
1 61.9795
2 281.4354
3 713.7340



282 20 KFAS

4 982.7950
5 1255.1334
6 1376.8441

With predict(), the one-step ahead predictions are returned using:

conf_marss2_t1 <- predict(fit_marss,
type = "ytt1",
interval = "confidence", level = 0.95

)
head(conf_marss2_t1$pred)

.rownames t y estimate se Lo 95
1 Nile 1 1120 0.00000 31.62278 -61.97950
2 Nile 2 1160 32.11507 127.20661 -217.20530
3 Nile 3 963 396.72378 161.74287 79.71359
4 Nile 4 1210 643.48197 173.12206 304.16897
5 Nile 5 1160 909.42338 176.38593 563.71332
6 Nile 6 1160 1029.38565 177.27798 681.92720

Hi 95
1 61.9795
2 281.4354
3 713.7340
4 982.7950
5 1255.1334
6 1376.8441

As before, we can get prediction intervals for the one-step ahead new data also.

pred_kfas_t1 <- predict(fit_kfas$model,
interval = "prediction",
se.fit = TRUE, filtered = TRUE

)
head(pred_kfas_t1)

fit lwr upr se.fit
[1,] 0.00000 -366.01817 366.0182 31.62278
[2,] 32.11507 -406.39204 470.6222 127.20661
[3,] 396.72378 -83.50877 876.9563 161.74287
[4,] 643.48197 148.24349 1138.7205 173.12206
[5,] 909.42338 409.78022 1409.0665 176.38593
[6,] 1029.38565 528.53116 1530.2401 177.27798

In {MARSS}, fitted() or predict() can be used. Again, these functions return
the standard deviation of ZXt +a+vt (so standard deviation of predictions) not the
standard error of the mean prediction. The {KFAS} returns the latter for prediction
intervals.
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pred_marss1_t1 <- fitted(fit_marss, type = "ytt1", interval = "prediction")
head(pred_marss1_t1)

.rownames t y .fitted .sd .lwr .upr
1 Nile 1 1120 0.00000 186.7474 -366.01817 366.0182
2 Nile 2 1160 32.11507 223.7322 -406.39204 470.6222
3 Nile 3 963 396.72378 245.0211 -83.50877 876.9563
4 Nile 4 1210 643.48197 252.6773 148.24349 1138.7205
5 Nile 5 1160 909.42338 254.9247 409.78022 1409.0665
6 Nile 6 1160 1029.38565 255.5427 528.53116 1530.2401

This would return the same values.

pred_marss2_t1 <- predict(fit_marss,
type = "ytt1",
interval = "prediction", level = 0.95

)

20.1.5 Residuals

Mathematically, the state and model residuals are

model : v̂t = E[ZXt +a+vt |Y = y]−E[ZXt +a|Y = y]

state : ŵt = E[BXt−1 +u+wt |Y = y]−E[BXt−1 +u|Y = y]

joint : εt ∼ MVN
([

v̂t
ŵt+1

]
,Σt

) (20.2)

The expectation can be conditioned on all the data (smoothation), data 1 to t − 1
(one-step ahead), or data 1 to t (contemporaneous). Σt is the conditional (on data)
variance of the joint residuals (state and observation); note the residuals for the v̂t
and ŵt in εt have different time indexing1 Residuals can be standardized by either
the full Σ matrix via the inverse of the lower triangle of the Cholesky matrix or via
the inverse of the square root of the diagonal of the Σ matrix (aka marginal or Pearson
residuals).

The {MARSS} residuals function will return all combinations of state versus ob-
servations, three conditioning types, and four standardization types (none, Cholesky,
marginal, or Block Cholesky for states only). This amounts to 2 times 3 times 4
= 24 possible residuals (except that state contemporaneous residuals do not exist
and Block Cholesky standardization only applies to states so 3*3 + 2*4 = 17 residual
types). {KFAS} has two residuals functions: residuals() and rstandard(). These
will return some of the possible residuals types but the names used in {KFAS} ver-
sus {MARSS} are different. {MARSS} has two residuals functions, which return
the same information in different forms. The normal one for users is residuals()

1 The joint residuals for MARSS models are traditionally written this way but you can cer-
tainly write them with the same time indexing if you wanted.
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and returns a data frame. With residuals(), one must specify the conditioning
(tT, tt or tt1) and the standardization (none, Cholesky, marginal or Block.Cholesky).
MARSSresiduals() returns matrices for all 3 standardizations along with the full Σ
matrices. With MARSSresiduals(), only the conditioning (tT, tt or tt1) needs to be
specified. For normal use, residuals() is the function to use. For those needing to
develop new functions or doing research on the properties of state-space residuals,
the full matrices will be helpful.

Here is a table of the correspondence between the {KFAS} and {MARSS} resid-
ual functions. The header is the {MARSS} naming scheme for state versus observa-
tion (x versus y) and conditioning (all data = tT, 1 to t = tt, and 1 to t-1 = tt1). This
shows the corresponding {KFAS} function for a call to
MARSS::residuals(marss_fit, type=..., conditioning=...)
marss_fit is output from MARSS(). In the {KFAS} functions, kfas_fit is output
from fitSSM().

type name standardization
tT tt tt1 model state none chol mar bchol

residuals(kfas_obj, type = "recursive") X X X
residuals(kfas_obj, type = "pearson") X X X

residuals(kfas_obj, type = "response") X X X
residuals(kfas_obj, type = "state") X X X

rstandard(kfas_obj, type = "recursive", X X X
standardization_type = "marginal")

rstandard(kfas_fit$model, type = "recursive", X X X X
standardization_type = "cholesky")

rstandard(kfas_obj, type = "pearson", X X X
standardization_type = "marginal")

rstandard(kfas_fit$model, type = "pearson", X X X X
standardization_type = "cholesky")

rstandard(kfas_obj, type = "state", X X X
standardization_type = "marginal")

rstandard(kfas_fit$model, type = "state", X X X
standardization_type = "cholesky")

Case 1. Recursive residuals

kfs <- KFS(fit_kfas$model)
resid_kfas <- residuals(kfs, type = "recursive")
resid_marss <- residuals(fit_marss,
type = "tt1",
standardization = "marginal"

)
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resid_marss <- subset(resid_marss, name == "model")
df <- cbind(
MARSS = resid_marss$.resids,
KFAS = as.vector(resid_kfas)

)
head(df)

MARSS KFAS
[1,] 1120.0000 1120.0000
[2,] 1127.8849 1127.8849
[3,] 566.2762 566.2762
[4,] 566.5180 566.5180
[5,] 250.5766 250.5766
[6,] 130.6143 130.6143

kfs <- KFS(fit_kfas$model)
resid_kfas <- rstandard(kfs,
type = "recursive",
standardization_type = "marginal"

)
resid_marss <- residuals(fit_marss,
type = "tt1",
standardization = "marginal"

)
resid_marss <- subset(resid_marss, name == "model")
df <- cbind(
MARSS = resid_marss$.std.resids,
KFAS = as.vector(resid_kfas)

)
head(df)

MARSS KFAS
[1,] 5.9974062 5.9974062
[2,] 5.0412268 5.0412268
[3,] 2.3111324 2.3111324
[4,] 2.2420611 2.2420611
[5,] 0.9829438 0.9829438
[6,] 0.5111253 0.5111253

In the univariate case, the Cholesky standardization is not different.

kfs <- KFS(fit_kfas$model)
resid_kfas <- rstandard(kfs,
type = "recursive",
standardization_type = "cholesky"

)
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resid_marss <- residuals(fit_marss,
type = "tt1",
standardization = "Cholesky"

)
resid_marss <- subset(resid_marss, name == "model")
df <- cbind(
MARSS = resid_marss$.std.resids,
KFAS = as.vector(resid_kfas)

)
head(df)

MARSS KFAS
[1,] 5.9974062 5.9974062
[2,] 5.0412268 5.0412268
[3,] 2.3111324 2.3111324
[4,] 2.2420611 2.2420611
[5,] 0.9829438 0.9829438
[6,] 0.5111253 0.5111253

Case 2. Pearson residuals

No standardization is done for residuals(kfs, type = "pearson").

kfs <- KFS(fit_kfas$model)
resid_kfas <- residuals(kfs, type = "pearson")
resid_marss <- residuals(fit_marss, type = "tT")
resid_marss <- subset(resid_marss, name == "model")
df <- cbind(
MARSS = resid_marss$.resids,
KFAS = as.vector(resid_kfas)

)
head(df)

MARSS KFAS
[1,] 1055.6192 1055.6192
[2,] 590.3631 590.3631
[3,] 153.1889 153.1889
[4,] 228.7989 228.7989
[5,] 110.1429 110.1429
[6,] 90.9427 90.9427

kfs <- KFS(fit_kfas$model)
resid_kfas <- rstandard(kfs,
type = "pearson",
standardization_type = "marginal"

)
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resid_marss <- residuals(fit_marss,
type = "tT",
standardization = "marginal"

)
resid_marss <- subset(resid_marss, name == "model")
df <- cbind(
MARSS = resid_marss$.std.resids,
KFAS = as.vector(resid_kfas)

)
head(df)

MARSS KFAS
[1,] 5.8169639 5.8169639
[2,] 3.6792994 3.6792994
[3,] 0.9925797 0.9925797
[4,] 1.4988347 1.4988347
[5,] 0.7236875 0.7236875
[6,] 0.5980134 0.5980134

In the univariate case, the Cholesky standardization is not different.

kfs <- KFS(fit_kfas$model)
resid_kfas <- rstandard(kfs,
type = "pearson",
standardization_type = "cholesky"

)
resid_marss <- residuals(fit_marss,
type = "tT",
standardization = "Cholesky"

)
resid_marss <- subset(resid_marss, name == "model")
df <- cbind(
MARSS = resid_marss$.std.resids,
KFAS = as.vector(resid_kfas)

)
head(df)

MARSS KFAS
[1,] 5.8169639 5.8169639
[2,] 3.6792994 3.6792994
[3,] 0.9925797 0.9925797
[4,] 1.4988347 1.4988347
[5,] 0.7236875 0.7236875
[6,] 0.5980134 0.5980134
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Case 3. Response residuals

kfs <- KFS(fit_kfas$model)
resid_kfas <- residuals(kfs, type = "response")
resid_marss <- residuals(fit_marss, type = "tT")
resid_marss <- subset(resid_marss, name == "model")
df <- cbind(
MARSS = resid_marss$.resids,
KFAS = as.vector(resid_kfas)

)
head(df)

MARSS KFAS
[1,] 1055.6192 1055.6192
[2,] 590.3631 590.3631
[3,] 153.1889 153.1889
[4,] 228.7989 228.7989
[5,] 110.1429 110.1429
[6,] 90.9427 90.9427

Case 4. State residuals

No standardization.

kfs <- KFS(fit_kfas$model, smoothing = "disturbance")
resid_kfas <- residuals(kfs, type = "state")
resid_marss <- residuals(fit_marss, type = "tT")
resid_marss <- subset(resid_marss, name == "state")
df <- cbind(
MARSS = resid_marss$.resids,
KFAS = as.vector(resid_kfas)

)
head(df)

MARSS KFAS
[1,] 505.25604 505.25604
[2,] 240.17420 240.17420
[3,] 171.39008 171.39008
[4,] 68.65598 68.65598
[5,] 19.20019 19.20019
[6,] -21.63444 -21.63444

Marginal standardization.

kfs <- KFS(fit_kfas$model, smoothing = "disturbance")
resid_kfas <- rstandard(kfs,
type = "state",
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standardization_type = "marginal"
)
resid_marss <- residuals(fit_marss,
type = "tT",
standardization = "marginal"

)
resid_marss <- subset(resid_marss, name == "state")
df <- cbind(
MARSS = resid_marss$.std.resids,
KFAS = as.vector(resid_kfas)

)
head(df)

MARSS KFAS
[1,] 5.9899274 5.9899274
[2,] 3.2550586 3.2550586
[3,] 2.4247425 2.4247425
[4,] 0.9832026 0.9832026
[5,] 0.2758730 0.2758730
[6,] -0.3111264 -0.3111264

kfs <- KFS(fit_kfas$model, smoothing = "disturbance")
resid_kfas <- rstandard(kfs,
type = "state",
standardization_type = "cholesky"

)
resid_marss <- residuals(fit_marss,
type = "tT",
standardization = "Block.Cholesky"

)
resid_marss <- subset(resid_marss, name == "state")
df <- cbind(
MARSS = resid_marss$.std.resids,
KFAS = as.vector(resid_kfas)

)
head(df)

MARSS KFAS
[1,] 5.9899274 5.9899274
[2,] 3.2550586 3.2550586
[3,] 2.4247425 2.4247425
[4,] 0.9832026 0.9832026
[5,] 0.2758730 0.2758730
[6,] -0.3111264 -0.3111264

The Cholesky standardization is "block" style in {KFAS} and treats the model
and state smoothed residuals as independent (they are not).
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kfs <- KFS(fit_kfas$model, smoothing = "disturbance")
resid_kfas <- rstandard(kfs,
type = "state",
standardization_type = "marginal"

)
resid_marss <- residuals(fit_marss,
type = "tT",
standardization = "marginal"

)
resid_marss <- subset(resid_marss, name == "state")
df <- cbind(
MARSS = resid_marss$.std.resids,
KFAS = as.vector(resid_kfas)

)
head(df)

MARSS KFAS
[1,] 5.9899274 5.9899274
[2,] 3.2550586 3.2550586
[3,] 2.4247425 2.4247425
[4,] 0.9832026 0.9832026
[5,] 0.2758730 0.2758730
[6,] -0.3111264 -0.3111264

kfs <- KFS(fit_kfas$model, smoothing = "disturbance")
resid_kfas <- rstandard(kfs,
type = "state",
standardization_type = "cholesky"

)
resid_marss <- residuals(fit_marss,
type = "tT",
standardization = "Block.Cholesky"

)
resid_marss <- subset(resid_marss, name == "state")
df <- cbind(
MARSS = resid_marss$.std.resids,
KFAS = as.vector(resid_kfas)

)
head(df)

MARSS KFAS
[1,] 5.9899274 5.9899274
[2,] 3.2550586 3.2550586
[3,] 2.4247425 2.4247425
[4,] 0.9832026 0.9832026
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[5,] 0.2758730 0.2758730
[6,] -0.3111264 -0.3111264

kfs <- KFS(fit_kfas$model, smoothing = "disturbance")
test <- cbind(
b = fit_kfas$model$Q[1, 1, 1] - kfs$V_eta[1, 1, ],
a = MARSSresiduals(fit_marss, type = "tT")$var.residuals[2, 2, ]

)
test <- as.data.frame(test)
test$diff <- test$b - test$a
head(test)

b a diff
1 7115.082 7115.082 0.000000e+00
2 5444.212 5444.212 2.728484e-12
3 4996.203 4996.203 1.818989e-12
4 4876.079 4876.079 -5.456968e-12
5 4843.870 4843.870 1.818989e-12
6 4835.234 4835.234 0.000000e+00

tail(test)

b a diff
95 4825.374 4825.374 1.818989e-12
96 4807.095 4807.095 1.818989e-12
97 4738.924 4738.924 1.818989e-12
98 4484.677 4484.677 0.000000e+00
99 3536.451 3536.451 5.456968e-12
100 0.000 NA NA

Plotting

We can plot the confidence intervals and predictions (Figure 20.1).
With {MARSS}, there is a plot method (and ggplot2::autoplot() method)

for marssMLE objects which will make the smoothed model predictions with CIs
and PIs (Figure 20.2). Alternatively you could used the fitted output (Figure 20.3).

Missing observations

Missing values are handled seamlessly in both {KFAS} and {MARSS}. We will use
a model with a stochastic x1 again so we can compare directly to {MARSS} output.

NileNA <- Nile
NileNA[c(21:40, 61:80)] <- NA
model_NileNA_stoch <-
SSModel(NileNA ~ SSMtrend(
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Fig. 20.1. KFAS smooth model fit (expected value of ZXt + a) confidence intervals and pre-
dictions.

plot.type <- ifelse(packageVersion("MARSS") < '3.11.4', "model.ytT", "fitted.ytT")
plot(fit_marss, plot.type = plot.type, pi.int = TRUE)
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Fig. 20.2. MARSS smooth model fit (expected value of ZXt +a) confidence intervals and pre-
dictions. Although plot() is used here, ggplot2::autoplot() is the recommended plotting
function for marssMLE objects.

degree = 1,
Q = list(matrix(NA))

),
H = matrix(NA)
)

model_NileNA_stoch$a1[1, 1] <- 0
model_NileNA_stoch$P1[1, 1] <- model_Nile_stoch$P1[1, 1]
model_NileNA_stoch$P1inf[1, 1] <- 0
kinits <- c(log(var(Nile)), log(var(Nile)))
fit_kfas_NA <- fitSSM(model_NileNA_stoch, kinits, method = "BFGS")
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require(ggplot2)
df <- cbind(conf_marss1, pred_marss1[, c(".lwr", ".upr")])
ggplot(df, aes(x = t, y = .fitted)) +

geom_ribbon(aes(ymin = .lwr, ymax = .upr), fill = "grey") +
geom_ribbon(aes(ymin = .conf.low, ymax = .conf.up), fill = "blue", alpha = 0.25) +
geom_line(linetype = 2) +
ylab("Predicted Annual Flow") +
xlab("") +
ggtitle("River Nile")
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Fig. 20.3. MARSS smooth model fit with confidence intervals and predictions using ggplot.

fit_marss_NA <- MARSS(as.vector(NileNA),
model = mod.nile.stoch,
inits = inits, method = "BFGS", silent = TRUE

)

The fits are close. The difference is due to the maximization stopping at different
places.

rbind(
MARSS = c(

Q = coef(fit_marss_NA, type = "matrix")$Q,
R = coef(fit_marss_NA, type = "matrix")$R,
logLik = logLik(fit_marss_NA)

),
KFAS = c(

Q = fit_kfas_NA$model$Q,
R = fit_kfas_NA$model$H,
logLik = -1 * fit_kfas_NA$optim.out$value

)
)
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Q R logLik
MARSS 22133.85 52955.30 -433.0319
KFAS 22084.75 53400.57 -433.0312

Plot the confidence intervals on the estimate of the river flow (Figure 20.4). This
is the model fit conditioned on all the data.

conf_kfas_NA <-
predict(fit_kfas_NA$model, interval = "confidence", filtered = FALSE)

conf_marss_NA <-
predict(fit_marss_NA, interval = "confidence", type = "ytT", level = 0.95)$pred

KFAS MARSS
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River Nile with 95% CIs on estimate

Fig. 20.4. Estimates of the river flow. When there are NAs, the estimate is less certain.

Compare model fitted values using all the data (smoothed) to one-step-ahead
estimates (Figure 20.5).

fitted_kfas_NA <- data.frame(
smooth = as.vector(fitted(fit_kfas_NA$model)),
one.step.ahead = as.vector(fitted(fit_kfas_NA$model, filtered = TRUE)),
name = "KFAS"

)
fitted_marss_NA <- data.frame(
smooth = fitted(fit_marss_NA, type = "ytT")$.fitted,
one.step.ahead = fitted(fit_marss_NA, type = "ytt1")$.fitted,
name = "MARSS"

)

20.2 Global temperature example

This example uses two series of average global temperature deviations for years
1880-1987 (Figure 20.6) using two observation time series (Shumway and Stoffer,
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Fig. 20.5. Smoothed (all data) or filtered (one-step ahead) estimates of the river flow.

2006, p. 327). This is a multivariate local level model with only one state process but
two observation processes.

Two ts for Global Temperature

Time
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Fig. 20.6. GlobalTemp data set

xt = xt−1 +wt where wt ∼ N(0,q)

yt =

[
1
1

]
xt +vt where vt ∼ MVN

([
0
0

]
,

[
r c
c r

])
(20.3)

Fit with {KFAS} (following code in ?KFAS).

data("GlobalTemp")
model_temp <- SSModel(GlobalTemp ~ SSMtrend(1, Q = NA, type = "common"),
H = matrix(NA, 2, 2)

)
kinits <- chol(cov(GlobalTemp))[c(1, 4, 3)]
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kinits <- c(0.5 * log(0.1), log(kinits[1:2]), kinits[3])
kfas_temp_default <- fitSSM(model_temp, kinits, method = "BFGS")
model_temp_stoch <- model_temp
model_temp_stoch$a1[1, 1] <- 0
model_temp_stoch$P1[1, 1] <- 1000 * max(diag(var(GlobalTemp)))
model_temp_stoch$P1inf[1, 1] <- 0
kfas_temp_stoch <- fitSSM(model_temp_stoch, kinits, method = "BFGS")

Fit with {MARSS}. We specify the equation matrices. Q is univariate so we don’t
need to specify that. B is not used so default is fine.

mod.list <- list(
Z = matrix(1, 2, 1),
R = matrix(c("r1", "c", "c", "r2"), 2, 2),
U = matrix(0),
A = matrix(0, 2, 1),
tinitx = 1

)
marss_temp_default <- MARSS(t(GlobalTemp), model = mod.list)
mod.list$x0 <- kfas_temp_stoch$model$a1
mod.list$V0 <- kfas_temp_stoch$model$P1
marss_temp_stoch_em <- MARSS(t(GlobalTemp), model = mod.list)
# use inits from a short run of EM algorithm
inits <- MARSS(t(GlobalTemp),
model = mod.list, control = list(maxit = 20),
silent = TRUE

)
marss_temp_stoch_bfgs <- MARSS(t(GlobalTemp),
model = mod.list,
inits = inits, method = "BFGS"

)

Compare estimates. The first two are the default models fit by {KFAS} and
{MARSS} respectively. {KFAS} uses a diffuse prior while {MARSS} estimates
x1 as a parameters (with the variance of x0 equal to 0). These are not the same
models and their log-likelihoods will not be comparable. The last two are the same
model (with a stochastic prior on x0) but fit with {KFAS} versus {MARSS} EM or
{MARSS} BFGS.

Q R1 Rcov R2 logLik
KFAS default 0.00263 0.01950 0.00651 0.00539 177.7361
MARSS em default 0.00301 0.01928 0.00620 0.00498 179.7697
KFAS stoch 0.00263 0.01950 0.00651 0.00539 174.8593
MARSS em stoch 0.00299 0.01935 0.00628 0.00508 174.8430
MARSS bfgs stoch 0.00262 0.01951 0.00652 0.00539 174.8592

Comparison of state and model (Pearson) residuals for the estimated models and
a {MARSS} model that has the same parameters as the {KFAS} estimated model.
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Fig. 20.7. GlobalTemp estimates

mod.list <- list(
Z = matrix(kfas_temp_stoch$model$Z, ncol = 1),
R = kfas_temp_stoch$model$H[, , 1],
U = matrix(0),
A = matrix(0, 2, 1),
Q = matrix(kfas_temp_stoch$model$Q[, , 1]),
x0 = kfas_temp_stoch$model$a1,
V0 = kfas_temp_stoch$model$P1,
tinitx = 1

)
marss_test <- MARSS(t(GlobalTemp), model = mod.list)
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Fig. 20.8. Comparison of residuals. diff.est are the difference of the same models estimated
with BFGS with the {KFAS} versus {MARSS} package. diff.id are identical models (same
parameter values) but the residuals are computed with different algorithms.
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20.3 Summary

{KFAS} fits state-space models in the general exponential family, of which MARSS
models with Gaussian errors are a part. The {KFAS} package relies, largely, on the
Durbin and Koopman algorithms which avoid the inversions in the classical Kalman
filter/smoother algorithms. These inversions lead to numerical instability and are
slow, and avoiding them greatly improves the stability of the fitting of state-space
models. The {KFAS} package also includes an exact algorithm for including dif-
fuse priors. The {KFAS} package has a number of functions to create a variety of
structural time-series models.

The {MARSS} package implements a general EM algorithm which allows seam-
less incorporation of linear constraints within matrices, including importantly the Q
and R matrices. It normally treats initial conditions as an estimated parameter to
avoid adding any information regarding the covariance structure of the initial condi-
tions, specifically to avoid a diagonal initial conditions variance matrix.

The syntax of the {KFAS} and {MARSS} packages are different and the output
functions and semantics are different. This chapter illustrates how to fit the same
models with each package and obtain the same output.
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Package MARSS: Warnings and errors

The following are brief descriptions of the warning and error messages you may see
and what they mean (or might mean). More warning information can be found by
typing MARSSinfo() at the commmand line.

Over the years of helping people fit MARSS models, we have found that the most
common problems arise when the MARSS model is inconsistent with the data. The
following are common scenarios.

• The data do not remotely follow a Gaussian distribution. For example, they are
binned data with long strings of one value.

• The MARSS model being fit is stationary but the data are clearly non stationary.
• The MARSS model being fit is non-stationary but the data are clearly stationary.
• The initial conditions are impossible given the model or the data. For example,

the initial conditions are fixed at 0 but data at t = 1 is far from 0. Or the model
implies that the initial state are correlated but a diagonal (= i.i.d.) initial condition
variance-covariance matrix was used.

• The MARSS model has a equilibrium mean level but the data are nowhere near
that level and a was set to zero so there is no way for the model to fit the data.

• The data just do not look anything like an autoregressive process.
• There isn’t enough data to estimate both process and observation variances.
• The user has designed a MARSS model with confounding parameters. Models

with multiple confounded intercepts easy to design by accident.

B update is outside the unit circle

If you are estimating B, then if the absolute value of all the eigenvalues of B are less
than 1, the system is stationary (meaning the X’s have some multivariate distribution
that does not change over time). In this case, we say that B is within the unit circle. A
pure univariate random walk for example would have B = 1 and it is not stationary.
The distribution of X for the pure random walk has a variance that increases with
time. If on the other hand |B| < 1, you have an Ornstein-Uhlenbeck process and is
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stationary, with a stationary variance of Q/(1−B2) (note B is a scalar here because
in this example X is univariate). If any of the eigenvalues (real part) are greater than
1, then the system will “explode”—it rapidly diverges.

In the EM algorithm, there is nothing to force B to be on or within the unit circle
(real part of the eigenvalues less than or equal to 1). It is possible at one of the EM
iterations the B update will be outside the unit circle. The problem is that if you
get too far outside the unit circle, the algorithm becomes numerically unstable since
small errors are magnified by the “explosive” B term. If you see the ‘B outside the
unit circle’ warning, it is fine as long as it is temporary and the log-likelihood does
not start decreasing (you will see a separate warning if that happens).

If you do see B outside the unit circle and the log-likelihood decreases, then it
probably means that you have poorly specified the model somehow. An easy way to
do this is to poorly specify the initial conditions, π and Λ. If, say, you try to specify a
vague prior on x0 (or x1) with π equal to zero and Λ equal to a diagonal matrix with
a large variance on the diagonal, you will likely run into trouble if B has off-diagonal
terms. The reason is that by specifying that Λ is diagonal, you specified that the
individual X’s in X0 are independent, yet if B has off-diagonal terms, the stationary
distribution of X1 is NOT independent. If you force the diagonal terms on Λ to be
big enough, you can force the maximum-likelihood estimate of B to be outside the
unit circle since this is the only way to account for X0 independent and X1 highly
correlated.

The problem is that you will not know the stationary distribution of the X’s
(from which X0 was presumably drawn) without knowing the parameters you
are trying to estimate. One approach is the estimate both π and Λ by setting
x0="unconstrained" and V0="unconstrained" in the model specification. Esti-
mating both π and Λ cannot be done robustly for all MARSS models, and in general,
one probably wants to specify the model in such a way as to fix one or both of these.
Another, more robust approach, is to treat x1 as fixed but unknown (instead of x0).
You do this by setting model$tinitx=1, so that π refers to t = 1 not t = 0. Then
estimate π and fix Λ = 0. This eliminates Λ from the model and often eliminates
the problems with prior specification—as the expense of m more parameters. Note,
when you set Λ = 0, Λ is truly eliminated from the model; the likelihood function
is different, so do not expect Λ = 0 and Λ ∼ 0 to have the same likelihood under all
conditions.

Warning! Reached maxit before parameters converged

The maximum number of EM iterations is set by control$maxit. If you get this
warning, it means that one of the parameters or log-likelihood had not yet reached
the convergence stopping criteria before maxit was reached. There are many situa-
tions where you might want to set control$maxit lower than the value needed to
reach convergence. For example, if you are using the EM algorithm to produce ini-
tial values for a different algorithm (like a Bayesian MCMC algorithm or a Newton
method) then you can set maxit low, say 20 or 50.
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Stopped at iter=xx in MARSSkem() because numerical errors
were generated in MARSSkf

This means the Kalman filter/smoother algorithm became unstable and most likely
one of the variances became ill-conditioned. When that happens the inverses of
those matrices are poor, and you will start to get negative values on the diago-
nals of your variance-covariance matrices. Once that happens, the inverse of that
variance-covariance matrix produces an error. If you get this error, turn on tracing
with control$trace=1. This will store the error messages so you can see what is
going on. It may be that you have specified the model in such a way that some of
the variances are being forced very close to 0, which makes the variance-covariance
matrix ill-conditioned. The output from the MARSS call will be the parameter values
just before the error occurred.

Warning: the xyz parameter value has not converged

The algorithm checks whether the log-likelihood and each individual parameter has
converged. If a parameter has not converged, you can try upping control$maxit and
see if it converges. If you set, maxit high, but the parameter is still not converging,
then it suggests that one of the variance parameters is so small that the EM update
steps for that parameter are tiny. For example, as Q goes to zero, the update steps
for u go to zero. As Λ goes to zero, the update steps for π go to zero. The first thing
to do is to reflect on whether you are inadvertently specifying the model in such a
way that one of the variances is forced to zero. For example, if the total variance in
X is 0.1 and you fix R = 0.2 then Q must go to zero. The second thing to do is to
try using a Newton algorithm, using your last EM values as the initial conditions for
the Newton algorithm. The initial values are set using the inits argument for the
MARSS() function.

MARSSkem: The solution became unstable and logLik
DROPPED

This is a more serious error as in the EM algorithm, the log-likelihood should
never drop. The first thing to do is check if you have specified a bizarre model
or data, inadvertently. Plot the data you are trying to fit. Often, this error arises
when a user has inadvertently scrambled their data order during a demeaning or
variance-standardization step. Second, check the model you are trying to fit. Use
test=MARSS(data, model=xyz, fit=FALSE) and then summary(test$model).
This shows you what MARSS() thinks your model is. You may be trying to fit an
illogical model.

If those checks looks good, then pass control$trace=1 into the MARSS() call.
This will report a fuller set of warnings. Look if the error “B is outside the unit circle”
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appears. If so, you are probably specifying a strange B matrix. Are you forcing the B
matrix to be outside the unit circle (eigenvalues > 1)? If so, you need to rethink your B
matrix constraints. If you do not see that error, look at test$iter.record$logLik.
If the log-likelihood is steadily dropping (at each iteration) or drops by large amounts
(much larger than the machine precision), that is bad and means that the EM al-
gorithm did not work. If however the log-likelihood is just fluctuating by small
amounts about some steady value, that is ok as it means that the values converged
but the parameters are such that there are slight numerical fluctuations. Try passing
control$safe=TRUE in the MARSS() call. This can sometimes help as it inserts a
call to the Kalman filter after each individual parameter update.

Stopped at iter=xx in MARSSkem: solution became unstable. R
(or Q) update is not positive definite

First check if you have specified an illegally constrained variance-covariance matrix.
For example, if the variances (diagonal) are constrained to be equal, you cannot
specify the covariances (off-diagonals) as unequal. Or if you specify that some of
the covariances are equal, you cannot specify the variances as all unequal. These
are illegal constraints on a variance-covariance matrix from a statistical perspective
(nothing to do with {MARSS} package functions specifically).

This could also be due to numerical instability as B leaves the unit circle or
one of the variance matrix becomes ill-conditioned. Try turning on tracing with
control$trace=1 and turn on safe with control$safe=TRUE. This will print out
the error warnings at each parameter update step. Then consider whether you have
inadvertently specified the model in such a way as to force this behavior in the B
parameter.

You might also get this error if you inadvertantly specified an improper struc-
ture for R or Q. For example, if you used R=diag(c(1,1,"r")) with the intent of
specifying a diagonal matrix with fixed variance 1 at R[1,1] and R[2,2] and an es-
timated R[3,3], you would have actually specified a character matrix with "0" on
the off-diagonals and c("1","1","r") on the diagonal. MARSS() interprets all el-
ements in quotes as names of parameters to be estimated. Thus it will estimate one
off-diagonal covariance and two diagonal variances. That happens to put illegal con-
straints on estimation of a variance-covariance matrix having nothing to do with the
MARSS() function but with estimation of variance-covariance matrices in general.

iter=xx MARSSkf: logLik computation is becoming unstable.
Condition num. of Sigma[t=1] = Inf and of R = Inf.

This means, generally, that V0 (Λ) is very small, say 0, and R diagonal elements are
very small and very close to zero.
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Warning: setting diagonal to 0 blocked at iter=X. logLik was
lower in attempt to set 0 diagonals on X

This is a warning not an error. What is happening is that one of the variances (in Q or
R) is getting small and the EM algorithm is attempting to set the value to 0 (because
control$degen.allow=TRUE). But when it tried to do this, the new likelihood with
the variance equal to 0 was lower and the variance was not set to 0.

A model with a variance minuscule and a model with the same variance equal to
0 are not the same model. In the first, a stochastic process with small variance exists
but in the second, the analogous process is deterministic. And in the first case, you
can get a situation where the likelihood term L(x|mean=mu,sigma=0) appears. That
term will be infinite when x=mu. So in the model with variance minuscule, you will
get very large likelihood values as the variance term gets smaller and smaller. In the
analogous model with that variance set to 0, that likelihood term does not appear so
the likelihood does not go to infinity.

This is not an error nor pathological behavior; the models are fundamentally dif-
ferent. Nonetheless, this will pose a dilemma when you want to chose the best model
based on maximum likelihood. The model with minuscule variance will have infinite
likelihood but the same behavior as the one with variance 0. In our experience, this
dilemma arises when one has a lot of missing data near the beginning of the time
series and is affected by how you specify the prior on the initial state. Try setting the
prior at t = 0 versus t = 1. Try using a diffuse prior. You absolutely want to compare
estimates using the BFGS and EM algorithms in this case, because the different al-
gorithms differ in their ability to find the maximum in this strange case. Neither is
uniformly better or worse. It seems to depend on which variance (Q or R) is going
to zero.

Warning: kf returned error at iter=X in attempt to set 0 diagonals
for X

This is a warning that the EM algorithm tried to set one of the diagonals of element X
to 0 because allow.degen is TRUE and element X is going to zero. However when
this was tried, the Kalman filter returned an error. Typically, this happens when both
R and Q elements are both trying to be set to 0. If the maximum-likelihood estimate
is that both R and Q are zero, it probably means that your MARSS model is not a
very good description of the data.

Warning: At iter=X attempt to set 0 diagonals for R blocked for
elements where corresponding rows of A or Z are not fixed.

You have control$degen.allow=TRUE and one of the R diagonal elements is get-
ting very small. {MARSS} attempts to set these R elements to 0, but if row i of R
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is 0, then the corresponding i rows of a and Z must be fixed. This is for the EM al-
gorithm. It might work with the BFGS algorithm, or might spit out garbage without
warning you. Always be suspicious when the EM and BFGS behavior is different.
That is a good sign that something is wrong with how your model describes the data.
It’s not a problem with the algorithms per se; rather for certain pathological models,
the algorithms behave differently from each other.

Stopped at iter=X in MARSSkem. XYZ is not invertible.

There are a series of checks in {MARSS} that check if matrix inversions are possible
before doing the inversion. These errors crop up most often when Q or R are getting
very small. At some point, they can get so small that inversions become unstable.
If this error is given, then the output will be the last parameter estimates before
the error. Try setting control$allow.degen=FALSE. Sometimes the error occurs
when a diagonal element of Q or R is being set to 0. You will also have to set
control$maxit to something smaller because the EM algorithm will not stop since
the problematic diagonal element will walk slowly and inexorably to 0.
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Package MARSS: Object structures

Model objects: class marssMODEL

Objects of class ‘marssMODEL’ specify Multivariate Autoregressive State Space
(MARSS) models. The model component of an ML estimation object (class marssMLE;
see below) is a marssMODEL object. These objects have the following components:

data An optional matrix (not data frame), in which each row is a time series (time
across columns).

fixed A list with 8 matrices Z, A, R, B, U, Q, x0, V0, specifying which elements of
each parameter are fixed.

free A list with 8 matrices Z, A, R, B, U, Q, x0, V0, specifying which elements of
each parameter are to be estimated.

M An array of dim n × n × T (an n × n missing values matrix for each time point).
Each matrix is diagonal with 0 at the i, i value if the i-th value of y is missing,
and 1 otherwise.

miss.value Deprecated. Replace missing values with NAs before passing to MARSS.

The matrices in fixed and free work as pairs to specify the fixed and free ele-
ments for each model parameter. The dimensions for fixed and free matrices are
as follows, where n is the number of observation time series and m is the number of
state processes:

Z n x m
B m x m
U m x 1
Q m x m
A n x 1
R n x n
x0 m x 1
V0 m x m
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MARSSinputs

All the user inputs to a MARSS() call are put into a list and then passed to a function
called MARSS.form() where form is the text specified by the form argument, e.g.,
MARSS.marss(). This function is used to create the marssMODEL object and then
MARSScheckinputs() is called to error check the other arguments.

data A matrix (not data frame) of observations (rows) × time (columns).
model The specification is form dependent. For the default marxss form, the inputs

are a list with up to 14 elements Z, A, R, B, U, Q, x0, V0, C, c, D, d, tinitx,
diffuse

inits A list with up to 10 matrices Z, A, R, B, U, Q, x0, V0, C, D specifying ini-
tial values for parameters. Dimensions are given in the class ‘marssMODEL’
section.

miss.value Deprecated. Specifies missing value representation (default is NA).
method The method used for estimation: ‘kem’ for EM, ‘BFGS’ for quasi-Newton.
form The form to use to interpret the ‘model’ argument and create the marss-

MODEL object.
control List of estimation options. These are method dependent.

ML estimation objects: class marssMLE

Objects of class marssMLE specify maximum-likelihood estimation for a MARSS
model, both before and after fitting. A minimal marssMLE object contains compo-
nents model, start and control, which must be present for estimation by func-
tions like MARSSkem().

model MARSS model specification (an object of class ‘marssMODEL’).
start List with 7 matrices A, R, B, U, Q, x0, V0, specifying initial values for param-

eters. Dimensions are given in the class marssMODEL section.
control A list specifying estimation options. For method="kem", these are

minit Minimum number of iterations in the maximization algorithm.
maxit Maximum number of iterations in the maximization algorithm.
abstol Optional tolerance for log-likelihood change. If log-likelihood decreases

less than this amount relative to the previous iteration, the EM algorithm
exits.

trace A positive integer. If not zero, a record will be created of each variable
the maximization iterations. The information recorded depends on the max-
imization method.

safe If TRUE, MARSSkem() will rerun MARSSkf() after each individual param-
eter update rather than only after all parameters are updated.

silent Suppresses printing of progress bar and convergence information.

MARSSkem() appends the following components to the marssMLE’ object:



B Package MARSS: Object structures 309

method A string specifying the estimation method (‘kem’ for estimation by MARSSkem()).
par A list with 8 matrices of estimated parameter values Z, A, R, B, U, Q, x0, V0.

If there are fixed elements in the matrices, the corresponding elements in $par
are set to the fixed values.

kf A list containing Kalman filter/smoother output. See Chapter 2
numIter Number of iterations required for convergence.
convergence Convergence status.
logLik the exact Log-likelihood. See Section 3.4.
errors any error messages
iter.record record of the parameter values at each iteration (if control$trace=1)

Several functions append additional components to the ‘marssMLE’ object passed
in. These include:

MARSSaic() Appends AIC, AICc, AICbb, AICbp, depending on the AIC flavors
requested.

MARSShessian() Appends Hessian, gradient, parMean and parSigma.
MARSSparamCIs() Appends par.se, par.bias, par.upCI and par.lowCI.
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Model specification in the core functions

Most users will not directly work with the core functions nor build marssMODEL
objects from scratch. Instead, they will interact with the core functions via the func-
tion MARSS() described in Chapter 4. With the MARSS() function, the user specifies
the model structure with matrices or text strings (“diagonal”, “unconstrained”, etc.)
and MARSS() builds the marssMODEL object. However, a basic understanding of the
structure of marssMODEL objects is useful if one wants to interact directly with the
core functions.

C.1 The fixed and free components of the model parameters

In a marssMODEL object, each parameter is written in vec form and specificed by
the equation of the form f + Dβββ as in Equation 77 in Holmes (2012). f is the fixed
matrix, D is the free matrix and βββ is the column vector of parameters. In a marss-
MODEL object, the fixed list has the f for each parameter matrix, the free list has
the D matrix for each parameter matrix, and par in the marssMLE object has the βββ
column vector of estimated parameters.

C.2 Examples

C.2.1 Q is a diagonal matrix with one variance value

In this case, there is only one value on the diagonal and the off-diagonals are 0. Thus
there is only one estimated parameter and the fixed values are all 0.

Q =




α 0 0
0 α 0
0 0 α




fixed$Q is
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f =




0
0
0
0
0
0
0
0
0




par$Q is
βββ =

[
”al pha”

]

and free$Q is

D =




1
0
0
0
1
0
0
0
1




Notice that f+Dβββ is the vec of Q.

C.2.2 Q is a diagonal matrix with unique variance values

Q =




α1 0 0
0 α2 0
0 0 α3




The fixed matrix is the same with all 0s, but the par and free matrices change. par$Q
is

βββ =




”al pha1”
”al pha2”
”al pha3”




and free$Q is

D =




1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1
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C.2.3 Q has one variance and one covariance

Q =




α β β
β α β
β β α




The fixed vector is still the same, all zero. par$Q is

βββ =

[
”al pha”
”beta”

]

and free$Q is

D =




1 0
0 1
0 1
0 1
1 0
0 1
0 1
0 1
1 0




C.2.4 Q is unconstrained

Since Q is a variance-covariance matrix, it must be symmetric across the diagonal.

Q =




α1 β1 β2
β1 α2 β3
β2 β3 α3




There are no fixed values in Q so f is still all zero. par$Q is

βββ =




”al pha1”
”beta1”
”beta2”

”al pha2”
”beta3”

”al pha3”




and free$Q is

D =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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C.2.5 Q is fixed

For example,

Q =




0.1 0 0
0 0.1 0
0 0 0.1




The fixed$Q matrix is 


0.1
0
0
0

0.1
0
0
0

0.1




There are no estimated parameters so the free matrix is 9 × 0 and the par matrix is
0×1.

C.3 Limits on the model forms that can be fit

The main limitation is that one must specify a model that has only one solution. The
core functions will allow you to attempt to fit an improper model (one with multiple
solutions). If you do this accidentally, it may or may not be obvious that you have
a problem. The estimation functions may chug along happily and return some solu-
tion. Careful thought about your model structure and the structure of the estimated
parameter matrices will help you determine if your model is under-constrained and
unsolvable.
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Textbooks and articles that use MARSS modeling for
population modeling

Textbooks Describing the Estimation of Process and Non-process
Variance

There are many textbooks on Kalman filtering and estimation of state-space models.
The following are a sample of books on state-space modeling that we have found
especially helpful.

Shumway, R. H., and D. S. Stoffer. 2006. Time series analysis and its applica-
tions. Springer-Verlag.

Harvey, A. C. 1989. Forecasting, structural time series models and the Kalman
filter. Cambridge University Press.

Durbin, J., and S. J. Koopman. 2001. Time series analysis by state space methods.
Oxford University Press.

Kim, C. J. and Nelson, C. R. 1999. State space models with regime switching.
MIT Press.

King, R., G. Olivier, B. Morgan, and S. Brooks. 2009. Bayesian analysis for
population ecology. CRC Press.

Giovanni, P., S. Petrone, and P. Campagnoli. 2009. Dynamic linear models in R.
Springer-Verlag.

Pole, A., M. West, and J. Harrison. 1994. Applied Bayesian forecasting and time
series analysis. Chapman and Hall.

Bolker, B. 2008. Ecological models and data in R. Princeton University Press.
West, M. and Harrison, J. 1997. Bayesian forecasting and dynamic models.

Springer-Verlag.
Tsay, R. S. 2010. Analysis of financial time series. Wiley.

Maximum-likelihood papers

This is just a sample of the papers from the population modeling literature.
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de Valpine, P. 2002. Review of methods for fitting time-series models with pro-
cess and observation error and likelihood calculations for nonlinear, non-Gaussian
state-space models. Bulletin of Marine Science 70:455-471.

de Valpine, P. and A. Hastings. 2002. Fitting population models incorporating
process noise and observation error. Ecological Monographs 72:57-76.

de Valpine, P. 2003. Better inferences from population-dynamics experiments
using Monte Carlo state-space likelihood methods. Ecology 84:3064-3077.

de Valpine, P. and R. Hilborn. 2005. State-space likelihoods for nonlinear fish-
eries time series. Canadian Journal of Fisheries and Aquatic Sciences 62:1937-1952.

Dennis, B., J.M. Ponciano, S.R. Lele, M.L. Taper, and D.F. Staples. 2006. Esti-
mating density dependence, process noise, and observation error. Ecological Mono-
graphs 76:323-341.

Ellner, S.P. and E.E. Holmes. 2008. Resolving the debate on when extinction risk
is predictable. Ecology Letters 11:E1-E5.

Erzini, K. 2005. Trends in NE Atlantic landings (southern Portugal): identifying
the relative importance of fisheries and environmental variables. Fisheries Oceanog-
raphy 14:195-209.

Erzini, K., Inejih, C. A. O., and K. A. Stobberup. 2005. An application of two
techniques for the analysis of short, multivariate non-stationary time-series of Mau-
ritanian trawl survey data ICES Journal of Marine Science 62:353-359.

Hinrichsen, R.A. and E.E. Holmes. 2009. Using multivariate state-space models
to study spatial structure and dynamics. In Spatial Ecology (editors Robert Stephen
Cantrell, Chris Cosner, Shigui Ruan). CRC/Chapman Hall.

Hinrichsen, R.A. 2009. Population viability analysis for several populations us-
ing multivariate state-space models. Ecological Modelling 220:1197-1202.

Holmes, E.E. 2001. Estimating risks in declining populations with poor data.
Proceedings of the National Academy of Sciences of the United States of America
98:5072-5077.

Holmes, E.E. and W.F. Fagan. 2002. Validating population viability analysis for
corrupted data sets. Ecology 83:2379-2386.

Holmes, E.E. 2004. Beyond theory to application and evaluation: diffusion ap-
proximations for population viability analysis. Ecological Applications 14:1272-
1293.

Holmes, E.E., W.F. Fagan, J.J. Rango, A. Folarin, S.J.A., J.E. Lippe, and N.E.
McIntyre. 2005. Cross validation of quasi-extinction risks from real time series: An
examination of diffusion approximation methods. U.S. Department of Commerce,
NOAA Tech. Memo. NMFS-NWFSC-67, Washington, DC.

Holmes, E.E., J.L. Sabo, S.V. Viscido, and W.F. Fagan. 2007. A statistical ap-
proach to quasi-extinction forecasting. Ecology Letters 10:1182-1198.

Kalman, R.E. 1960. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering 82:35-45.

Lele, S.R. 2006. Sampling variability and estimates of density dependence: a
composite likelihood approach. Ecology 87:189-202.
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Lele, S.R., B. Dennis, and F. Lutscher. 2007. Data cloning: easy maximum likeli-
hood estimation for complex ecological models using Bayesian Markov chain Monte
Carlo methods. Ecology Letters 10:551-563.

Lindley, S.T. 2003. Estimation of population growth and extinction parameters
from noisy data. Ecological Applications 13:806-813.

Ponciano, J.M., M.L. Taper, B. Dennis, S.R. Lele. 2009. Hierarchical models
in ecology: confidence intervals, hypothesis testing, and model selection using data
cloning. Ecology 90:356-362.

Staples, D.F., M.L. Taper, and B. Dennis. 2004. Estimating population trend and
process variation for PVA in the presence of sampling error. Ecology 85:923-929.

Zuur, A. F., and G. J. Pierce. 2004. Common trends in Northeast Atlantic squid
time series. Journal of Sea Research 52:57-72.

Zuur, A. F., I. D. Tuck, and N. Bailey. 2003. Dynamic factor analysis to estimate
common trends in fisheries time series. Canadian Journal of Fisheries and Aquatic
Sciences 60:542-552.

Zuur, A. F., R. J. Fryer, I. T. Jolliffe, R. Dekker, and J. J. Beukema. 2003. Es-
timating common trends in multivariate time series using dynamic factor analysis.
Environmetrics 14:665-685.

Bayesian papers

This is a sample of the papers from the population modeling and animal tracking
literature.

Buckland, S.T., K.B. Newman, L. Thomas and N.B. Koestersa. 2004. State-space
models for the dynamics of wild animal populations. Ecological modeling 171:157-
175.

Calder, C., M. Lavine, P. Müller, J.S. Clark. 2003. Incorporating multiple sources
of stochasticity into dynamic population models. Ecology 84:1395-1402.

Chaloupka, M. and G. Balazs. 2007. Using Bayesian state-space modelling to
assess the recovery and harvest potential of the Hawaiian green sea turtle stock. Eco-
logical Modelling 205:93-109.

Clark, J.S. and O.N. Bjørnstad. 2004. Population time series: process variability,
observation errors, missing values, lags, and hidden states. Ecology 85:3140-3150.

Jonsen, I.D., R.A. Myers, and J.M. Flemming. 2003. Meta-analysis of animal
movement using state space models. Ecology 84:3055-3063.

Jonsen, I.D, J.M. Flemming, and R.A. Myers. 2005. Robust state-space modeling
of animal movement data. Ecology 86:2874-2880.

Meyer, R. and R.B. Millar. 1999. BUGS in Bayesian stock assessments. Can. J.
Fish. Aquat. Sci. 56:1078-1087.

Meyer, R. and R.B. Millar. 1999. Bayesian stock assessment using a state-space
implementation of the delay difference model. Can. J. Fish. Aquat. Sci. 56:37-52.

Meyer, R. and R.B. Millar. 2000. Bayesian state-space modeling of age-structured
data: fitting a model is just the beginning. Can. J. Fish. Aquat. Sci. 57:43-50.
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Newman, K.B., S.T. Buckland, S.T. Lindley, L. Thomas, and C. Fernández. 2006.
Hidden process models for animal population dynamics. Ecological Applications
16:74-86.

Newman, K.B., C. Fernández, L. Thomas, and S.T. Buckland. 2009. Monte Carlo
inference for state-space models of wild animal populations. Biometrics 65:572-583

Rivot, E., E. Prévost, E. Parent, and J.L. Baglinière. 2004. A Bayesian state-
space modelling framework for fitting a salmon stage-structured population dynamic
model to multiple time series of field data. Ecological Modeling 179:463-485.

Schnute, J.T. 1994. A general framework for developing sequential fisheries
models. Canadian J. Fisheries and Aquatic Sciences 51:1676-1688.

Swain, D.P., I.D. Jonsen, J.E. Simon, and R.A. Myers. 2009. Assessing threats
to species at risk using stage-structured state-space models: mortality trends in skate
populations. Ecological Applications 19:1347-1364.

Thogmartin, W.E., J.R. Sauer, and M.G. Knutson. 2004. A hierarchical spatial
model of avian abundance with application to cerulean warblers. Ecological Appli-
cations 14:1766-1779.

Trenkel, V.M., D.A. Elston, and S.T. Buckland. 2000. Fitting population dynam-
ics models to count and cull data using sequential importance sampling. J. Am. Stat.
Assoc. 95:363-374.

Viljugrein, H., N.C. Stenseth, G.W. Smith, and G.H. Steinbakk. 2005. Density
dependence in North American ducks. Ecology 86:245-254.

Ward, E.J., R. Hilborn, R.G. Towell, and L. Gerber. 2007. A state-space mixture
approach for estimating catastrophic events in time series data. Can. J. Fish. Aquat.
Sci., Can. J. Fish. Aquat. Sci. 644:899-910.

Wikle, C.K., L.M. Berliner, and N. Cressie. 1998. Hierarchical Bayesian space-
time models. Journal of Environmental and Ecological Statistics 5:117-154

Wikle, C.K. 2003. Hierarchical Bayesian models for predicting the spread of
ecological processes. Ecology 84:1382-1394.
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B matrix
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troubleshooting estimation, 179,
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bootstrap, 52
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Hessian approximation, 15, 47, 87
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non-parametric bootstrap, 15
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observed with error, 191

density-independent, 69
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Q-Q plot, 219
residual trends, 96

dynamic factor analysis, 119

covariates, 132
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loadings, 130
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rotation, 130

dynamic linear modeling
forecasting, 216
univariate, 211

error
observation, 70
process, 69, 70

errors
degenerate, 10
ill-conditioned, 10

estimation, 73
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Dennis method, 74
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Kalman filter, 15, 19
Kalman smoother, 15, 19
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maximum-likelihood, 73, 74
Newton methods, 19
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REML, 8

extinction, 69
diffusion approximation, 78
uncertainty, 83
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fitted values, 34, 258, 276
forecasting, 34, 216

diagnostics, 219
plotting, 257
structural ts models, 256

functions
AIC, 14
coef, 14, 48
fitted, 258, 259
forecast, 256
gls, 227, 229, 234
is.marssMLE, 14
is.marssMODEL, 16
logLik, 227
MARSS, 13, 36, 39, 41, 43
MARSSaic, 15, 21, 53, 309
MARSSboot, 15, 21, 52
MARSShatyt, 14
MARSShessian, 15, 309
MARSSkem, 14, 18, 308
MARSSkf, 14, 15, 19, 20, 49
MARSSkfas, 20
MARSSkfss, 20, 250
MARSSoptim, 14
MARSSparamCIs, 9, 15, 21, 47,

309
MARSSsimulate, 15, 21, 53
MARSSvectorizeparam, 15
optim, 14
predict, 256
print, 14, 46
residuals, 14, 153, 172, 260
summary, 16, 46
tidy, 46
tsSmooth, 14, 49, 258

initial conditions, 57
Monte Carlo search, 62
setting for BFGS, 38
specifying, 57
using another fit, 61

Kalman filter and smoother, 34, 49,
250, 274

KFAS, 274

StructTS, 250

lag-1 covariance smoother, 49
likelihood, 15, 20, 34, 53

and missing values, 21
innovations algorithm, 20
MARSSkf function, 53
missing value modifications, 20
multimodal, 19
troubleshooting, 10, 19

MAR(p), 237, 238
MARSS(p), 244

MARSS model, 3, 6, 137
DFA example, 119
DLM example, 211
multivariate example, 89, 105, 137
univariate example, 70

missing values, 8, 291
and AICb, 22
and parametric bootstrap, 21
likelihood correction, 21

model selection, 21, 105, 127
AIC, 21, 95, 96, 100, 102
AIC weights, 112
AICc, 21, 102
bootstrap AIC, 22, 102
bootstrap AIC, AICbb, 22, 53
bootstrap AIC, AICbp, V, 22, 53,

102
MARSSaic function, 15, 53

model specification
in MARSS, 25
in marssMODEL objects, 311

multivariate linear regression, 160,
223

with autocorrelated errors, 162,
226, 233

objects
inputs, 308
marssMLE, 13, 308, 309
marssMODEL, 13, 16, 307

Observation filtering and smoothing,
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KFAS, 276
outliers, 147

plotting, 34
confidence intervals, 291
predictions, 34, 257

prediction intervals, 282
KFAS, 278, 282

print, 46
marssMLE, 46
marssMODEL, 46
par, 46
states, 46

prior, 4, 29, 35
diffuse, 151
troubleshooting, 9, 38, 302, 305

residuals, 34, 283
auxiliary, 151
KFAS, 283
model, 152, 260
one-step-ahead, 284
pearson, 286, 296
smoothations, 151, 152
standardized, Block.Cholesky, 289
standardized, Cholesky, 285
standardized, marginal, 285
state, 153, 288
StructTS, 260

seasonality, 167
simulation, 21, 53, 70
standard errors, 15

one-step-ahead, 281
structural breaks, 147

structural ts model
Nile, 147, 271
trend, 154
univariate, 147

structural ts models
covariates, 263
fitted, 257
forecasting, 256
level, 249
multivariate, 260, 294
residuals, 260
seasonal, 253
trend, 251
univariate, 249, 271

tidy, 46
troubleshooting, 10, 301

B estimation, 179, 185
B outside unit circle, 301
collinearity, 227
degenerate, 10, 50
degenerate variances, 185
ill-conditioning, 10
Kalman filter errors, 305
local maxima, 19
logLik dropped, 303
matrix not invertible, 306
matrix not positive definite, 304
non-convergence, 10, 54, 227, 302,

303
nonconvergence, 180
numerical instability, 10, 303
sensitivity to x0 prior, 35, 38, 185
setting diagonal to 0 blocked, 305
sigma condition number, 304


