--- title: "MAR1 State-Space Model" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{MAR1-State-Space} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(rmarkdown.html_vignette.check_title = FALSE) ``` ```{r setup} library(MAR1) library(MARSS) ``` **These examples take 1-2 minutes to run** ## Construct a MAR model We will use [run.mar()] arguments to set variables and restrictions. See the [run.mar()] page for information. No restrictions on the restriction matrix (all 0.5). ```{r} data(L4.mar) myvar <- c(0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 2, 2, 2) # 8 variates, 3 covariates myres <- matrix(0.5, nrow = length(which(myvar == 1)), ncol = length(which(myvar != 0)) ) ``` Fit a MAR1 model first. ```{r} run1 <- run.mar(L4.mar, variables = myvar, restrictions = myres, search = "exhaustive") ``` ## Fit state-space model This allows use to include observation error. `control` can be passed in to limit the number of iterations run. ```{r} ss.fit <- ss.mar1(L4.mar, run1, control = list(maxit = 50)) ``` ## Compare to best fit model ```{r} ss.fit$B run1$bestfit$B ``` ## Use a known observation error ```{r} R <- diag(0.2, 8) ss.fit <- ss.mar1(L4.mar, run1, model = list(R = R), control = list(maxit = 50)) ```